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Abstract.
It was shown recently in [1] that, for small positive a, Vn− f0( nN

√
a) = o(1),

N → ∞, uniformly in n = 0, 1, ..., N . Here Vn, n = 0, 1, ... , is defined
recursively by V0 = 1, V1 = 1 + k; ∆2Vn = Vn+1 − 2Vn + Vn−1 = k/Vn,
n = 1, 2, ... , with k = a/N2, and f0(x), x ≥ 0, satisfies f0(0) = 1, f ′0(0) = 0;
f ′′0 (x) = 1/f0(x), x ≥ 0. In the present note, we present a refined conver-
gence result that emerges when the initial condition V0 = 1, V1 = 1 + kb,
with b ∈ [1/2, 1], is coupled to an appropriately sampled and shifted version
f0(

n+β
N

√
a) of f0 with β ∈ [0, 1/2].
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1 Introduction

In [1] a particular model (Distflow model) is investigated for charging
electric vehicles at N (large) charging stations connected by a power line,
with the requirement that the ratio between the voltages at the root station
and at the last station of the power line should stay below a level 1/(1−∆),
where the tolerance ∆ is small (typically of the order 0.1). Under the Distflow
model, see [1], Subsection 2.3.1 and in particular (2.12–13), the normalized
voltages Vn, n = 0, 1, ..., N − 1, N , with Vn the voltage at the root station
and V0 the voltage at the last station of the power line, satisfy the recursion

V0 = 1 , V1 = 1 + k0 ; Vn+1 − 2Vn + Vn−1 =
kn
Vn

, n = 1, ..., N − 1 . (1)

The kn, comprising given charging rates pn and a resistance value r, are
normally small (of the order a/N2 with 0 < a < 1/2).

For analytically comparing the Distflow model to a linearized version
(Linearized Distflow model, see [1], Subsection 2.3.2) of it, it is assumed that
all kn are equal to k = a/N2, with a ∈ (0, 1/2) independent of n. In [1],
Section 5.3, (5.10–12) and Appendix C, a major effort is made to establish
a relationship between the sequence Vn, n = 0, 1, ... , and the solution f0(x),
x ≥ 0, of the second-order boundary value problem

f ′′0 (x) =
1

f0(x)
, x ≥ 0 ; f0(0) = 1 , f ′0(0) = 0 . (2)

In particular, it is shown that Vn → f0(
n
N

√
a) = f0(n

√
k) uniformly in

n = 0, 1, ..., N as N → ∞ (with a ∈ (0, 1/2) fixed). It is shown in [1],
see Section 5.4 and Appendix D, that the f0 of (2) can be related to the
inverse of the imaginary error function (see Section 2 below for details), and
is, therefore, analytically more tractable than the sequence Vn itself.

In [1], nothing has been said about the convergence speed in this main
result (Proposition 5.1 in [1]). Moreover, the choice f(t) = f0(t

√
k), t ≥

0, that satisfies f ′(0) = 0, does not seem to account, as the continuous
counterpart of the sequence Vn, n = 0, 1, ... , for the initial condition V0 = 1,
V1 = 1 + k. In the present note, we shall consider, more generally, the
sequences, recursively defined by

V0 = 1 , V1 = 1 + kb ; Vn+1 − 2Vn + Vn−1 =
k√
n
, n = 1, 2, ... , (3)

with fixed b ∈ [1/2, 1] and, as before, k = a/N2 with N large and fixed
a ∈ (0, 1/2). The sequences will be compared to the sequences of sample
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values f0((n+ β)
√
k), n = 0, 1, ... , of

f(t) = f0((t+ β)
√
k) , t ≥ 0 , (4)

where β ∈ [0, 1/2] is fixed and f0 is given by (2).
It will be shown that for any pair of values b ∈ [1/2, 1], β ∈ [0, 1/2]

f(n)− ε1 − Vn = O(nk) = O
( na
N2

)
, n = 0, 1, ..., N , (5)

while the choice β = b− 1/2 yields the sharpening

f(n)− ε1 − Vn = O(n2k2) = O
(n2a2

N4

)
, n = 0, 1, ..., N . (6)

In (5) and (6) we have ε1 = f(1)− V1 = O(k).
In the latter sharpening, we have β = 0 for the case that b = 1/2. In that

case, we have ε1 = f(1)− V1 ≈ − 1
24
k2, see (29) below. Then (6) shows that

f(n) − Vn is very small, i.e., Vn is a very accurate estimate for f0(n
√
k) =

f0(
n
N

√
a). For instance, when N = 2, a = 1 (so that k = a/N2 = 1/4), we

compute

V0 = 1 , V1 = 1 + 1
2
k = 9

8
, V2 = 2V1 +

k

V1
− V0 = 53

36
= 1.4722222... , (7)

while f0(1) has the numerical value 1.4657576..., showing that V2 is indeed an
accurate estimate of f0(1). A similar exercise, with N = 10, a = 0.1, shows
that the ensuing V10 estimates f0(1) with absolute accuracy 2.45× 10−4.

2 Preliminaries about f0

By definition, we have for x ≥ 0

f ′′0 (x) =
1

f0(x)
; f0(0) = 1 , f ′(0) = 0 . (8)

The function f0(x) is positive, increasing and convex. We have, see [1],
Appendix D,

f0(x) = exp(U2(x)) ,

U(x)∫
0

ev
2

dv =
x√
2
, x ≥ 0 . (9)
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Using the asympotics of the Dawson integral exp(−y2)
y∫
0

exp(v2) dv, y →∞,

see [2], it can be shown that f0(x) ∼ x(2 lnx)1/2, x→∞.
There is the power series

f0(x) =
∞∑
l=0

clx
l = 1 + 1

2
x2 − 1

24
x4 + 7

720
x6 − 127

40320
x8 + ... . (10)

Using (8), the cl can be computed recursively via

c0 = 1 , c1 = 0 , c2 = 1/2 ;
(11)

cl+2 = −
l−1∑
j=0

(j + 2)(j + 1)

(l + 2)(l + 1)
cj+2cl−j , l = 1, 2, ... .

We have furthermore

c2k+1 = 0 , c2k+2 =
(−1)k 2k Ck+1

(k + 1) πk+1/2
, k = 0, 1, ... , (12)

see [3], in particular Table II, where the Cj are given numerically for j =
1, 2, ..., 200. The Cj are the power series coefficients in

inverf(z) =
∞∑
j=1

Cj z
2j−1 , |z| < 1 , (13)

where inverf(z) is the inverse of the error function

erf(w) =
2√
π

w∫
0

e−t
2

dt , w ∈ C . (14)

The function f0(z) is analytic in the whole complex plane, with the exception
of the branch cuts [i

√
π
2
, i∞) and (−i∞,−i

√
π
2
]. Hence, the power series in

(10) has radius of convergence equal to
√

π
2
. The Cj in (13) satisfy

Cj ∼
1

2j

1√
ln(2j)

, j →∞ , (15)

(private communication N.M. Temme, November 2020).
Lower and upper bounds for f0(x), sharp for larger values of x, can be

obtained from corresponding bounds for Dawson’s function, see [2], Section 4.
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We have the following formulas for the derivatives of f0 (also see [1],
Appendix D, (D.4)):

f ′0(x) = (2 ln f0(x))1/2 , f ′′0 (x) =
1

f0(x)
, (16)

f
(3)
0 (x) =

−f ′0(x)

f 2
0 (x)

, f
(4)
0 (x) =

2(f ′0(x))2 − 1

f 3
0 (x)

, (17)

f
(5)
0 (x) =

7f ′0(x)− 6(f ′0(x))3

f 4
0 (x)

, f
(6)
0 (x) =

7− 46(f ′0(x))2 + 24(f ′0(x))4

f 5
0 (x)

.

(18)
By Taylor’s theorem, we have for x > 0

f0(x) = 1 + 1
2
x2 f ′′0 (ξx,2) = 1 + 1

2
x2 + 1

24
x4 f

(4)
0 (ξx,4) , (19)

for some ξx,2, ξx,4 ∈ [0, x]. Therefore, since

0 ≤ f ′′0 (ξ) ≤ 1 , f
(4)
0 (ξ) ≥ −1 , ξ ≥ 0 , (20)

we have

1 ≤ 1 + 1
2
x2 − 1

24
x4 ≤ f0(x) ≤ 1 + 1

2
x2 , 0 ≤ x ≤

√
12 . (21)

For instance, 1 ≤ 1.4583... ≤ f0(1) = 1.4657... ≤ 1.50 (case x = 1).
The following table gives numerical values of f0(x) for x = 0.00(0.05)1.05

x f0(x) x f0(x)

0.00 1.000000000 0.55 1.147682689
0.05 1.001249740 0.60 1.175007022
0.10 1.004995843 0.65 1.204458888
0.15 1.011229016 0.70 1.235986299
0.20 1.019933948 0.75 1.269536343
0.25 1.031089567 0.80 1.305059980
0.30 1.044669388 0.85 1.342490497
0.35 1.060641934 0.90 1.381787644
0.40 1.078971210 0.95 1.422894099
0.45 1.099617219 1.00 1.465757611
0.50 1.122536503 1.05 1.510326813

The numerical values of f0(x) were obtained by solving the second equation
in (9) for U(x) = (ln f0(x))1/2 using Newton’s method. As initialization, we
used the recursion in (3) with b = 1/2 and b = 1, respectively, and k = 0.01,
to compute estimates Vn of f0(0.1n) and f0(0.1(n + 1/2)), n = 0, 1, ..., 10 ,
respectively. Also see Section 6, where we employ (10) for a similar purpose.
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3 Comparing Vn and f (n)

We write the recursive relation in (3) as

Vn+1 = Vn + (Vn − Vn−1) +
k

Vn
, n = 1, 2, ... . (22)

With f(t) = f0((t + β)
√
k), t ≥ 0, see (4), we have f ′′(t) = k/f(t), t ≥ 0,

and so

f(n+ 1) = f(n) + f ′(n− 1
2
) +

1∫
−1/2

f ′′(n+ v) r(v) dv

= f(n) + f ′(n− 1
2
) +

1∫
−1/2

k r(v)

f(n+ v)
dv , n = 1, 2, ... , (23)

where

r(v) =


1 , − 1/2 ≤ v ≤ 0 ,
1− v , 0 ≤ v ≤ 1 ,
0 , otherwise .

(24)

Observe that r(v) ≥ 0, and that
1∫

−1/2
r(v) dv = 1. We shall therefore compare

for n = 1, 2, ...

f(n) to Vn , f ′(n− 1/2) to Vn − Vn−1 ,
1∫

−1/2

k r(v)

f(n+ v)
dv to

k

Vn
. (25)

Set
εn = f(n)− Vn , n = 0, 1, ... . (26)

From the initial conditions V0 = 1, V1 = 1 + kb in (3), the definition of f(t)
as f0((t+ β)

√
k) in (4), and the Taylor expansion of f0(x) in (10), we get

ε0 = f0(β
√
k)− 1 = 1

2
β2k − 1

24
β4k2 + 7

720
β6k3 − ... , (27)

ε1 = f0((β + 1)
√
k)− (1 + kb)

= (1
2

(β + 1)2 − b) k − 1
24

(β + 1)4k2 + 7
720

(β + 1)6k3 − ... . (28)
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For later use, we also mention that

ε1−ε0 = (β+ 1
2
−b) k− 1

24
((β+1)4−β4) k2+ 7

720
((β+1)6−β6) k3− ... . (29)

Next, for n = 1, 2, ...

f ′(n− 1
2
)− (Vn − Vn−1) = f ′(n+ 1

2
)− (f(n)− f(n− 1)) + εn − εn−1 . (30)

Finally, for n = 1, 2, ...

1∫
−1/2

k r(v)

f(n+ v)
dv − k

Vn

=
k

f(n)
− k

Vn
+

1∫
−1/2

k r(v)
[ 1

f(n+ v)
− 1

f(n)

]
dv

= − k εn
f(n)Vn

+

1∫
−1/2

r(v) [f ′′(n+ v)− f ′′(n)] dv

= − k ε1
f(n)Vn

− k(εn − ε1)
f(n)Vn

+

1∫
−1/2

r(v) [f ′′(n+ v)− f ′′(n)] dv . (31)

Thus, we conclude from (22), (23), (26), (30) and (31) that for n = 1, 2, ...

f(n+ 1) = f(n) + f ′(n− 1
2
) +

1∫
−1/2

k r(v)

f(n+ v)
dv

= Vn + (Vn − Vn−1) +
k

Vn

+ (f(n)− Vn) + (f ′(n− 1
2
)− (Vn − Vn−1))

+
( 1∫
−1/2

k r(v)

f(n+ v)
dv − k

Vn

)

= Vn+1 + εn + (f ′(n− 1
2
)− (f(n)− f(n− 1) + εn − εn−1)
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+
(
− k ε1
f(n)Vn

− k(εn − ε1)
f(n)Vn

)

+

1∫
−1/2

r(v) [f ′′(n+ v)− f ′′(n)] dv

= Vn+1 + εn+1 , (32)

where
εn+1 = 2εn − εn−1 + τn , (33)

with

τn = − k ε1
f(n)Vn

+
(
f ′(n− 1

2
)− (f(n)− f(n− 1))

+

1∫
−1/2

r(v) [f ′′(n+ v)− f ′′(n)] dv
)

− k(εn − ε1)
f(n)Vn

. (34)

We find from (33)

(εi+1 − εi)− (εi − εi−1) = τi , i = 1, 2, ... , (35)

and so, by summation over i = 1, 2, ..., j ,

εj+1 − εj = ε1 − ε0 +

j∑
i=1

τi , j = 1, 2, ... , (36)

and, by summation over j = 1, 2, ..., n ,

εn+1 − ε1 = n(ε1 − ε0) +
n∑
j=1

j∑
i=1

τi , n = 1, 2, ... . (37)

In the next section, we shall put effort in estimating the quantities that
occur in the expression (34) for τn. We thus obtain estimates and bounds for
εn+1 − ε1 that can be used to get an approximation of

Vn+1 = −εn+1 + f(n+ 1) = −ε1 + f(n+ 1)− (εn+1 − ε1) , (38)

with n = 1, 2, ..., N − 1.
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4 Estimating τn

We recall that we have k of the form a/N2 with a ∈ (0, 1/2) and N →∞.
We consider the quantity, see (34)

Qn := f ′(n− 1
2
)− (f(n)− f(n− 1)) +

1∫
−1/2

r(v) [f ′′(n+ v)− f ′′(n)] dv . (39)

With f(t) = f0((t + β)
√
k), the analyticity properties of f0, as noted in

Section 2, we can safely use Taylor expansions of f(n− 1
2
± 1

2
) and f ′′(n+ v).

Thus we have

f(n− 1
2
± 1

2
) = f(n− 1

2
) + f ′(n− 1

2
)(± 1

2
) + 1

2
f ′′(n− 1

2
)(± 1

2
)2

+ 1
6
f (3)(n− 1

2
)(± 1

2
)3 + 1

24
f (4)(n− 1

2
)(± 1

2
)4

+ 1
120

f (5)(n− 1
2
)(± 1

2
)5 + ... , (40)

and we obtain

f ′(n− 1
2
)− (f(n)− f(n− 1)) = − 1

24
f (3)(n− 1

2
)− 1

1920
f (5)(n− 1

2
)− ... . (41)

We have similarly from

f ′′(n+ v)− f ′′(n) = f (3)(n) v + 1
2
f (4)(n) v2 + 1

6
f (5)(n) v3 + ... (42)

that

1∫
−1/2

r(v) [f ′′(n+v)−f ′′(n)] dv = 1
24
f (3)(n)+ 1

16
f (4)(n)+ 11

1920
f (5)(n) ... (43)

where it has been used that

1∫
−1/2

vj r(v) dv = 1
24
, 1

8
, 11

320
, j = 1, 2, 3 . (44)

Thus we get for Qn in (39) the expression

− 1
24
f (3)(n− 1

2
)− 1

1920
f (5)(n− 1

2
)− ...

+ 1
24
f (3)(n) + 1

16
f (4)(n) + 11

1920
f (5)(n) + ... . (45)
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We shall now argue that we can neglect the terms involving f (5) in (45),
compared to the combined terms involving f (3) and f (4), at the expense of a
relative error of the order

√
k. We have by the mean value theorem

−1
24
f (3)(n− 1

2
) + 1

24
f (3)(n) + 1

16
f (4)(n)

= 1
48
f (4)(ξn) + 1

16
f (4)(n) = 1

12
f (4)(ϑn) , (46)

with numbers ξn, ϑn ∈ [n− 1
2
, n]. Also,

−1
1920

f (5)(n− 1
2
) + 11

1920
f (5)(n) is of the order 1

192
f (5)(ηn) , (47)

with a number ηn ∈ [n− 1
2
, n]. Thus we should bound

1
192

f (5)(ηn)
1
12
f (4)(ϑn)

= 1
16

f (5)(ηn)

f (4)(ϑn)
≈ 1

16

f (5)(n)

f (4)(n)
. (48)

We observe that

f (j)(t) = k
1
2
j f

(j)
0 ((t+ β)

√
k) . (49)

With x = (n + β)
√
k ≤
√
a ≤ 1

2

√
2, and the explicit expressions for f

(j)
0 in

(16–18), we should bound
√
k f

(5)
0 (x)

f
(4)
0 (x)

=

√
k

16f0(x)

7f ′0(x)− 6(f ′0(x))3

2(f ′0(x))2 − 1

= −
√
k

16f0(x)

7t− 6t3

1− 2t2
, 0 ≤ x ≤ 1

2

√
2 , (50)

where we have set t = f ′0(x). The function f0(x) varies gently between 1
and f0(

1
2

√
2) = 1.2406 when x ∈ [0, 1

2

√
2] and is therefore harmless. On the

other hand, t = f ′0(x) increases from 0 at x = 0 to 0.6567 at x = 1
2

√
2, and

is therefore, because of the denominator 1− 2t2 in the second line of (50), of
chief importance in (50) when x is close to 1

2

√
2 = 0.7071. We evaluate

1

16f0(x)

7t− 6t3

1− 2t2

∣∣∣
x=

1
2

√
2
= 1.0616 . (51)

We conclude that the ratio in (48) is bounded between 0 and −c
√
k with c

of the order unity.
We thus approximate the quantity Qn in (39) by 1

12
f (4)(ϑn) at the expense

of a relative error O(
√
k). By (49) while the expression in (17) for f

(4)
0 (x)

shows that −1 ≤ f
(4)
0 (x) ≤ 0 when 0 ≤ x ≤ 1

2

√
2, we conclude that

Qn ≈ 1
12
f (4)(ϑn) = O(k2) . (52)
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We proceed by considering the quantity −k ε1/f(n)Vn in (34). We have
f(n) ≥ 1, Vn ≥ 1, and so by (28)

−k ε1
f(n)Vn

= −
1
2

(β + 1)2 − b
f(n)Vn

k2 +O(k3) , (53)

where the first quantity at the right-hand side has modulus ≤ |1
2

(β + 1)2 −
b| k2; since β ∈ [0, 1/2], b ∈ [1/2, 1], we have that 1

2
(β + 1)2 − b ∈ [−1

2
, 5

8
].

We conclude from (34), (39) and (52), (53)

τn = − k(εn − ε1)
f(n)Vn

+O(k2) , (54)

the O holding uniformly in n = 1, 2, ..., N − 1 as N →∞.
The contribution to the double series

∑n
j=1

∑j
i=1 τi of the O-term in (54)

is O(k2n2) = O(n2a2/N4). In the next section it will be indicated that this
is enough to establish the first main result in (5) from (37).

In the case that β = b− 1/2 (the condition under which the second main
result, see (6), is to be established), we must be more precise about the
O(k2)-term in (54). This O(k2)-term arises as

σi := 1
12
f (4)(ϑi)−

k ε1
f(i)Vi

(55)

from (52) and (53), and gives rise to a contribution

n∑
j=1

j∑
i=1

σi (56)

to the double series
∑n

j=1

∑j
i=1 τi in (37). Using that

ε1 = (1
2

(β + 1)2 − b) k +O(k2) = 1
2

(b− 1
2
)2 k +O(k2) (57)

when β = b− 1/2, we have

σi ≈ 1
12
f
(4)
0 (xi) k

2 − (b− 1/2)2

f(i)Vi
k2 , (58)
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where xi = (ϑi + β)
√
k is close to i

√
k. We then approximate

n∑
j=1

j∑
i=1

f
(4)
0 (xi) =

n∑
i=1

(n+ 1− i) f (4)
0

(i+ β

N

√
a
)

≈
n∑
i=0

(n− i) f (4)
0

(i√a
N

)
=
N2

a

n∑
i=0

√
a

N

(n√a
N
− i
√
a

N

)
f
(4)
0

(i√a
N

)

≈ N2

a

y∫
0

(y − x) f
(4)
0 (x) dx , y =

n
√
a

N
. (59)

By partial integration

y∫
0

(y − x) f
(4)
0 (x) dx = (y − x) f

(3)
0 (y)

∣∣∣y
0
+

y∫
0

f
(3)
0 (x) dx

= 0 + f
(2)
0 (x)

∣∣∣y
0
=

1

f0(y)
− 1 , (60)

where it has been used that f (3)(0) = 0, f
(2)
0 (x) = 1/f0(x). Thus

n∑
j=1

j∑
i=1

f
(4)
0 (xi) ≈ −

N2

a

(
1− 1

f0(y)

)
, y =

n
√
a

N
. (61)

We also approximate

n∑
j=1

j∑
i=1

1

f(i)Vi
≈

n∑
i=1

n+ 1− i
f 2
0 ( i+β

N

√
a)

≈ N2

a

y∫
0

y − x
f 2
0 (x)

dx , y =
n
√
a

N
. (62)

Hence, from (61) and (62), we get

n∑
j=1

j∑
i=1

σi ≈ − 1
12
k2
N2

a

(
1− 1

f0(y)

)
− (b− 1

2
)2 k2

N2

a

y∫
0

y − x
f 2
0 (x)

dx
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= − 1
12
k2n2 1

y2

(
1− 1

f0(y)

)
− (b− 1

2
)2 k2n2 1

y2

y∫
0

y − x
f 2
0 (x)

dx ,

y =
n
√
a

N
. (63)

The second line of (63) can be further approximated by using that, see (10),

f0(x) = 1 + 1
2
x2 − 1

24
x4 + ... . (64)

This gives

1

y2

(
1− 1

f0(y)

)
= 1

2
(1− 7

12
y2+...) ,

1

y2

y∫
0

y − x
f 2
0 (x)

dx = 1
2

(1− 1
6
y2+...) , (65)

and we obtain

n∑
j=1

j∑
i=1

σi ≈ − 1
24
k2n2(1− 7

12
y2 + ...)− 1

2
(b− 1

2
)2 k2n2(1− 1

6
y2 + ...) ,

y =
n
√
a

N
. (66)

5 Proof of the main results

We start with the proof of (5) that takes the form

εn − ε1 = O(nk) , 0, 1, ..., N . (67)

The cases n = 0, 1 are trivial or settled by (29), so we may restrict to the cases
n = 2, 3, ..., N . According to (37) and (54), we have for n = 1, 2, ..., N − 1

εn+1 − ε1 = n(ε1 − ε0)− k
n∑
j=1

j∑
i=1

εi − ε1
f(i)Vi

+O
(n2a2

N4

)
. (68)

We have

ε1 − ε0 = (β + 1
2
− b) k +O(k2) ,

n2a2

N4
= k

n2a

N2
≤ ka . (69)

Now, by induction in (68) using that f(i), Vi ≥ 1, we have that εn+1 − ε1 =
O(nk). In the induction step we use that

k
n∑
j=1

j∑
i=1

O((i− 1) k)

f(i)Vi
= O(k2n3) = O

(
nk

n2a2

N2

)
. (70)
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This already shows (5).
The above argument applies to both the case that β + 1

2
− b = 0 (which

we consider in detail later), and the case that β + 1
2
− b is not close to 0

which we consider now. In the latter case, see (69), the O(n
2a2

N4 )-term in (68)
is at least a factor na

N2 smaller than |n(ε1 − ε0)|. Ignoring this smaller term,
we see by induction that εn+1 − ε1 has the same sign as ε1 − ε0, and that
|εn+1 − ε1| ≤ n |ε1 − ε0|. Therefore,

k
n∑
j=1

j∑
i=1

εi − ε1
f(i)Vi

has the same sign as ε1 − ε0 , (71)

and∣∣∣ k n∑
j=1

j∑
i=1

εi − ε1
f(i)Vi

∣∣∣ ≤ k |ε1 − ε0|
n∑
j=1

j∑
i=1

(i− 1)

= 1
6
kn(n2 − 1) |ε1 − ε0| ≤ 1

6
n |ε1 − ε0|

n2a

N2
. (72)

Thus we find that for n = 1, 2, ..., N − 1

εn+1 − ε1 = n(ε1 − ε0)(1− δn) , 0 ≤ δn ≤ 1
6

n2

N2
a , (73)

a result that yields a sharpening of (5) in the sense that we are more precise
about the implicit constant in the O of (5).

We now consider the case that β + 1
2
− b = 0. Then

ε1 − ε0 = − 1
24

((β + 1)4 − β4) k2 +O(k3) , (74)

and so n(ε1 − ε0) is much smaller than n2a2

N4 , see (68). In (55)–(66), we have

been much more precise about the O(n
2a2

N4 )-term in (68), with (63) or (66) as
final result. The second term at the right-hand side of (68) is even smaller
than n(ε1 − ε0), compare the developments to obtain (73) by incorporating
this second term in the case that β + 1

2
− b is away from 0. Ignoring this

smaller term, we get

εn+1 − ε1 ≈ n(ε1 − ε0)− C k2n2 , n = 1, ..., N − 1 , (75)

where C = C(y) is given by

C =
1

12y2

(
1− 1

f0(y)

)
+

(b− 1/2)2

y2

y∫
0

y − x
f 2
0 (x)

dx

= 1
24

(1− 7
12
y2 + ...) + 1

2
(b− 1

2
)2 (1− 1

6
y2 + ...) , y =

n
√
a

N
. (76)
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Thus, (75) gives a sharp form of the result (6), in the sense that we are more
precise about the implicit constant in the O of (6), also including the lower-
order term n(ε1 − ε0). Observe that the case b = 1/2 is special for then the
second term on the second line of (76) vanishes.

6 Numerical illustration

We recall (38), so that we have for n = 1, 2, ..., N

Vn = −εn + f(n) = −ε1 + f(n)− (εn − ε1) (77)

(the case n = 1 in (77), not covered by (38), holds trivially). Accordingly,
we can consider both f(n) and −ε1 + f(n) as an approximation of Vn. We
present in this section numerical results for the following 4 cases:

(b = 1
2
, β = 0) , (b = 1

2
, β = 1

2
) , (b = 1 , β = 0) , (b = 1 , β = 1

2
) , (78)

see (3) and (4), and we choose

a = 0.25 , N = 10 , k =
a

N2
= 0.0025 ,

√
k = 0.05 . (79)

We thus require for the f(n) in (77) the numerical values of f(n) = f0((n+
β)
√
k) with β = 0, 1/2;

√
k = 0.05 and n = 0, 1, ..., 10. In the table below

we display these values.

n f0(0.05n) f0(0.05(n+ 1/2))

0 1.000000000 1.000312484
1 1.001249740 1.002811183
2 1.004995843 1.007802364
3 1.011229016 1.015273698
4 1.019933948 1.025206954
5 1.031089567 1.037578307
6 1.044669388 1.052358702
7 1.060641934 1.069514393
8 1.078971210 1.089007264
9 1.099617219 1.110795538

10 1.122536503 1.134834231

The numerical evaluatoin of f0(x) is done by solving the second equation in
(9) for U(x) = (ln f0(x))1/2, where the 5 terms of the series on the right-hand
side of (10) are used to get a high-accuracy approximation for f0(x) that can
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be used for initialization of a Newton iteration to compute U(x).

Case b = 1/2, β = 0. We evaluate Vn, n = 0, 1, ..., 10 , according to the re-
cursion

V0 = 1 , V1 = 1+ 1
2
k = 1.00125 ; Vn+1 = Vn+

0.0025

Vn
−Vn−1 , n = 1, 2, ..., 9 .

(80)
Furthermore, f(n) = f0(0.05n), see first column in the above table. Since
β − b + 1/2 = 0 in this case, the result (75), yielding an approximation of
εn+1 − ε1, is relevant. We have in the present case

ε0 = 0 , ε1 = −0.000000260 , ε1 − ε0 = −0.000000260 . (81)

Since ε1 is extremely small in this case, we can consider both f(n) and
−ε1 + f(n), see (77), as an approximation of Vn. The other case in (78) that
has β − b + 1/2 = 0 is (b = 1 , β = 1/2), and this case happens to have a
large value of ε1 so that then the approximation −ε1 + f(n) of Vn is more
appropriate. To treat the two cases with β− b+1/2 = 0 on an equal footing,
we choose in both cases −ε1 + f(n) as an approximation of Vn. Thus in the
table below, we display Vn and −ε1 + f(n), and we consider εn − ε1 as the
error in approximating Vn by −ε1 + f(n). This latter error is approximated
by ̂εn−ε1 = (ε1 − ε0)(n− 1)− C k2(n− 1)2 , (82)

see (75), where we take C = 1/25 for convenience (the actual C as given by
(76) varies between 1/24 and 1/27.5 when n = 0, 1, ..., 10).

n Vn −ε1 + f(n) εn − ε1 ̂εn−ε1
2 1.004996879 1.004996103 -0.000000776 -0.000000510
3 1.011231328 1.011229276 -0.000002052 -0.000001520
4 1.019938010 1.019934208 -0.000003802 -0.000003030
5 1.031095822 1.031089827 -0.000005995 -0.000005040
6 1.044678238 1.044669648 -0.000008590 -0.000007550
7 1.060653736 1.060642194 -0.000011542 -0.000010560
8 1.078986271 1.078971470 -0.000014801 -0.000014070
9 1.099635796 1.099617479 -0.000018317 -0.000018080
10 1.122558800 1.122536763 -0.000022037 -0.000022590

Case b = 1/2, β = 1/2. We compute Vn, n = 0, 1, ..., 10 , according to the
recursion in (80). Furthermore, f(n) = f0(0.05(n+1/2)). Since β−b+1/2 =
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1/2 6= 0 in this case, the result (73), yielding an approximation of εn+1 − ε1,
is relevant. We have

ε0 = 0.000312484 , ε1 = 0.0001561183 , ε1 − ε0 = 0.0001248699 . (83)

The right-hand side of (73) shows that the error εn grows approximately as
ε1 + (n − 1)(ε1 − ε0), with ε1 and ε1 − ε0 of comparable magnitude. In the
table below, we display Vn and f(n), together with the quantity εn as the
error in approximating Vn by f(n). This latter error εn = ε1 + (εn − ε1) is
approximated by

ε̂n = ε1 + (n− 1)(ε1 − ε0) (84)

in accordance with (73), where we have replaced δn−1 by 0.

n Vn f(n) εn ε̂n

2 1.004995843 1.007802364 0.002806521 0.002809882
3 1.011229016 1.015273698 0.004044682 0.004058581
4 1.019933948 1.025206954 0.005273006 0.005307280
5 1.031089567 1.037578307 0.006488740 0.006555979
6 1.044669388 1.052358702 0.007689314 0.007804678
7 1.060641934 1.069514393 0.008872459 0.009053377
8 1.078971210 1.089007264 0.010036054 0.010302076
9 1.099617219 1.110795538 0.011178319 0.011550775
10 1.122536503 1.134834231 0.012299201 0.012799474

Case b = 1, β = 0. We evaluate Vn, n = 0, 1, ..., 10 , according to the recur-
sion

V0 = 1 , V1 = 1+k = 1.0025 ; Vn+1 = Vn+
0.0025

Vn
−Vn−1 , n = 1, 2, ..., 9 .

(85)
Furthermore, we have f(n) = f0(0.05n). Since β + 1/2 − b = −1/2 6= 0 in
this case, the result (73), yielding an approximation of εn+1− ε1, is relevant.
We have

ε0 = 0 , ε1 = −0.001250260 , ε1 − ε0 = −0.01250260 . (86)

In the table below, we display Vn and f(n), together with the quantity εn as
the error in approximating Vn by f(n). This latter error is approximated as
in (84).
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n Vn f(n) εn ε̂n

2 1.007493766 1.004995843 -0.002497923 -0.002500520
3 1.014968936 1.011229016 -0.003739920 -0.003750780
4 1.024907236 1.019933948 -0.004973288 -0.005001040
5 1.037284781 1.031089567 -0.006195214 -0.006251300
6 1.052072465 1.044669388 -0.007403077 -0.007501560
7 1.069236411 1.060641934 -0.008594477 -0.008751820
8 1.088738474 1.078971210 -0.009767264 -0.010002080
9 1.110536773 1.099617219 -0.010919554 -0.011252340
10 1.134586235 1.122536503 -0.012049732 -0.012502600

Case b = 1, β = 1/2. We compute Vn, n = 0, 1, ..., 10 , according to the re-
cursion in (83), and we have f(n) = f0(0.05(n+1/2)). Since β+1/2− b = 0,
we use the result (75). Thus, we approximate Vn by −ε1 + f(n), at the
expense of an error εn − ε1. The latter error is approximated by

̂εn−ε1 = (n− 1)(ε1 − ε0)− 1
6

(n− 1)2 k2 , (87)

according to (75), where we have taken C = 1/6 (the actual C, see (63) and
(66), varies between 1

6
= 1

24
+ 1

2
(b− 1/2)2 at y = 0 and 1/6.385 at y = 1/2).

We have

ε0 = 0.000312484 , ε1 = 0.000311183 , ε1 − ε0 = 0.000001301 . (88)

This gives the following table

n Vn −ε1 + f(n) εn − ε1 ̂εn−ε1
2 1.007493766 1.007491181 -0.000002585 -0.000002342
3 1.014968936 1.014962515 -0.000006421 -0.000006768
4 1.024907236 1.024895771 -0.000011465 -0.000013278
5 1.037284781 1.037267124 -0.000017657 -0.000021870
6 1.052072465 1.052047519 -0.000024946 -0.000032546
7 1.069236411 1.069203210 -0.000033201 -0.000045306
8 1.088738474 1.088696081 -0.000042393 -0.000060148
9 1.110536773 1.110484355 -0.000052410 -0.000077074
10 1.134586235 1.134523048 -0.000063187 -0.000096084

Observations. The tables for the two cases with β − b + 1/2 not close to 0,
cases (b = 1/2 , β = 1/2) and (b = 1 , β = 0) in (78), show that the error
εn = f(n) − Vn is well approximated by the linear function ε̂n = ε1 + (n −
1)(ε1 − ε0) on the range n = 2, 3, ..., 10. In these cases the term n(ε1 − ε0)
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with ε1 − ε0 = (β + 1/2 − b) k + O(k2), is dominant in the expression at
the right-hand side of (68). The residual error is due to the deleted two
other terms at the right-hand side of (68), and manifest themselves mainly
for larger n.

In the two cases where β − b + 1/2 = 0, cases (b = 1/2 , β = 0) and
(b = 1 , β = 1/2) in (78), we have that ε1 − ε0 = O(k2), causing the term
n(ε1 − ε0) to be dominated by the term O(n2a2/N4) at the right-hand side
of (68). It is now necessary to be more precise about the implicit constant
in the O-term. In estimating this implicit constant, there are several places
where approximations had to be made, such as deletion of the terms involv-
ing f (5) in (45) (leading to a relative error of order

√
k), and replacement of

two double series, see (59) and (62), by Riemann integrals with integration
ranges that are slightly shifted to achieve a convenient form of the end result.
As a result the estimated error ̂εn−ε1 of the error εn − ε1 = f(n)− ε1 − Vn
cannot be expected to be as accurate as in the cases with β − b + 1/2 away
from 0. This is evident from the two tables for the cases with β−b+1/2 = 0:
in the table for the case b = 1, β = 1/2, we have | ̂εn−ε1| is about 50% larger
than |εn − ε1| for n = 10.

References

[1] M.H.M. Christianen, J. Cruise, A.J.E.M. Janssen, S. Shneer, M. Vlasiou,
and B. Zwart. Comparison of stability regions for a line distribution
network with stochastic load demands. Submitted to Queueing Systems,
12-02-2022.

[2] A.J.E.M. Janssen. Bounds on Dawson’s integral occurring in the anal-
ysis of a line distribution network for electric vehicles. EURANDOM
Preprint Series 2021-014, December 14, 2021, ISSN 1389-2355.

[3] A.J. Strecok. On the calculation of the inverse of the error function.
Math. Comp. 22, pp. 144–158, 1968.

19


