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Abstract

This paper derives exact expressions for the Laplace-Stieltjes transform of the order picking time in single- and 2-
block warehouses. We consider manual warehouses that deploy return routing and assume that order sizes follow a
Poisson distribution. The results in this paper apply to a wide range of storage policies, including but not restricted
to class-based and random storage. Furthermore, we compare the performance of the storage policies and warehouse
lay-outs by using numerical inversion of the Laplace-Stieltjes transforms.
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1. Introduction

Warehouses have grown to become an essential part of today’s supply chains, as is illustrated in [1]. With this
growth, the analysis and optimization of warehouse design has also become ever more important. In particular, the
order picking process, the retrieval of items from a warehouse, stands central in many designs due to its high cost.
Tompkins et. al., for instance, estimated that order picking contributes at least 50% of all operating costs [2].

The analysis and optimization of order picking in itself already is a challenging subject, which is highlighted by
the vast amount of literature on the topic, see e.g. the literature review [1]. This complexity stems from the many
elements that affect the picking process, such as: the lay-out of warehouses, routing of pickers and storage assignment.
On top of that, optimal solutions often are impractical, e.g., optimal routes cause confusion amongst pickers [3]. To
overcome such practical issues, warehouses often apply straightforward, yet efficient, policies.

The performance evaluation of such policies is also crucial to warehousing design. Literature on this topic varies
from simulation studies [4] to average route-length approximations [5]. In [6], the authors derived exact formulas for
the average route-length, which were then used to construct optimal class-based storage lay-outs. A different point of
view came from [7], where the authors proposed to compare order batching policies based on the average order-lead
time, i.e. the delay experienced by a customer, rather than the average order picking time. The authors modeled
the warehouse as a multi-server queue, in which the servers and service times represent pickers and order picking
times respectively. They then used a (two moment) approximation of the expected order-lead time to find the optimal
batch size. More recently, [8] provided exact results for the first two moments of the order picking time for several
routing policies. Using similar queueing approximations the authors showed that the policy with the shortest average
route-length, but higher second moment, could possibly result in higher average order-lead times.

In the current paper we step away from the moments of the order picking time and instead derive exact results for
the Laplace-Stieltjes transform (abv. LST) of the order picking time distribution. For this, we analyze both single- and
2-block warehouses that deploy the return routing policy (see Section 2.1 for a description). We assume that the order
size follows a Poisson distribution and exploit that the numbers of picks in the different aisles are independent under
this assumption. The results in this paper allow for the analysis of other properties of the picking time distribution,
such as tail probabilities, and an accurate approximation of the order-lead time distribution [9, pages 292-300].

Multi-block warehouses have been discussed extensively in literature, and have proven to be interesting for both
practical and theoretical purposes. The substantial literature mostly focuses on the expected order picking time and
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varies from exact optimization [10] to simulation studies [11]. Extensions of the models, as well as queueing theoreti-
cal applications of the results, are also well-discussed. Notwithstanding the amount of research, the actual distribution
of the order picking time was not yet determined. The design of warehouses, so far, has also been restricted to
maximization of the throughput and minimization of the experienced delay. In this work, we extend the research by
finding exact expressions for the order picking time distribution in single- and 2-block warehouses. These results can
be used to design warehouses more carefully by also considering other performance statistics, e.g. tail probabilities.
Additionally, distributional knowledge increases the accuracy of queueing theoretical analyses [12].

This paper is built up as follows. In Section 2 we provide the model descriptions for the single- and 2-block
warehouses, as well as a description of the return routing policy. In Section 3 we derive the LST of the order picking
time distribution for single- and 2-block warehouses, under return routing. We also show how to apply these results
to two storage policies: random and class-based. In Section 4 we use numerical inversion methods for Laplace
Transforms to compare these storage policies as well as the single- and 2-block warehouses.

2. Warehousing Model

We consider single- and 2-block warehouses, consisting of k equally spaced parallel aisles of length l and width
wa. We assume that the warehouses consist of a single cross-aisle from which the pickers can enter the aisles. The
difference between the single- and 2-block warehouses comes from the cross-aisle placement. In the single-block
warehouse the cross-aisle is placed in the front, whereas in the 2-block warehouse, the cross-aisle is placed in the
middle and splits the aisles in two sub-aisles (each of length l/2), see Figure 1. In the sequel, we write sub-aisle
(i, j) for the sub-aisle in the i-th aisle and j-th block, that is: sub-aisle (i, 1) is the upper half of aisle i in the 2-block
warehouse. The depot at which the pickers receive and deliver their orders is located on the left-hand side of the
cross-aisle, indicated as I/O in Figure 1.

We assume that the pickers walk with a fixed speed v and spend a random time P to pick an arbitrary item, where
P has LST ΦP(s). Furthermore, we assume that the time spent picking an item is independent of the pick locations
and other picking times. The order size, M, is assumed to follow a Poisson distribution with mean λ. For example,
this is valid when item demands arrive according to a Poisson process and are batched as a single order after a fixed
time.

We assume that the items in an order are independently located throughout the warehouse according to some
storage policy. Let pi, j denote the probability that an arbitrary item in an order falls within sub-aisle (i, j) and let
Fi, j(x) denote the probability that an arbitrary pick in this sub-aisle is within distance x (as a fraction of the sub-aisle
length) of the cross-aisle, for i = 1, ..., k and j = 1, 2. Throughout this paper, we write pi and Fi(·) in the case
of a single-block warehouse. This description allows for both continuous and discrete locations within aisles and
represents a wide range of storage policies, e.g., the random and class-based storage policies. Under the former, the
item locations in an order are uniformly distributed amongst and within the aisles. In the single-block warehouse this
implies pi = 1/k and Fi(x) = x. In Section 3.3 we discuss the random and class-based policy more extensively. In
particular, we show that the latter policy results in piece-wise linear Fi(·).

(a) Single-block warehouse. (b) 2-block warehouse.

Figure 1: Examples of the return routing policy in both single- and 2-block warehouses.
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2.1. Routing Policy

In this paper we focus on the return routing policy, where pickers traverse each aisle until the furthest item that has
to be picked and then traverse back. In the single-block warehouse this entails that the pickers walk across the front
cross-aisle and enter each aisle in which they have to pick items. Within such aisles, the pickers pick all items up until
the furthest item and then walk back to the cross-aisle. After all aisles are visited, the picker returns to the depot. An
example of this policy is given in Figure 1a.

We introduce the following notation. Let Ni denote the number of items to pick in aisle i and let Ai be the location
of the furthest item in aisle i (as a fraction of the aisle length l). Furthermore, we write k+ for the furthest aisle in
which items have to be picked. Using this notation, we find that the picking time contribution of aisle i, denoted as Ti,
is given by:

Ti =

Ni∑
j=1

P j +
2l
v

Ai +
2wa

v
1{i < k+}. (1)

This relation consists of 3 different components: the time spent picking items, the traveling time within the aisle and
the time spent traveling towards the next aisle. Since k+ is the last aisle in which items have to be picked, the last term
disappears when i = k+. For i > k+ the aisle will not have a picking time contribution and hence all terms will equal
zero.

Consequently, the total order picking time, T , is given by:

T =


k+−1∑
i=1

Ti + Tk+ if
k∑

i=1

Ni > 0,

0 else.

(2)

Here, we explicitly distinguish between Ti for i < k+ and Tk+ because of the third term in (1) and the fact that aisle k+

must consist of at least one pick, while the other aisles can still have zero picks.
Return routing in a 2-block warehouse is similar. The pickers walk across the cross-aisle and apply the return

routing policy for a single-block warehouse on the lower block up until all items in said block are picked, hence they
do not yet return to the I/O point. The pickers than traverse to the furthest (full) aisle with picks and apply the return
routing policy on the upper block from right to left. When all items are picked, the pickers deliver their order at the
depot-point. An illustration of this policy is given in Figure 1b.

In line with the notation for the single-block warehouse, we write k+ for the furthest aisle in which items have
to be picked, Ni, j for the number of items to pick in sub-aisle (i, j), and Ai, j for the location of the furthest item in
sub-aisle (i, j) (as a fraction of the sub-aisle length l/2 and with respect to the cross-aisle). Then Ti is given by:

Ti =

Ni,1+Ni,2∑
j=1

P j +
l
v

(
Ai,1 + Ai,2

)
+

2wa

v
1{i < k+}. (3)

Remark that relation (2) still holds for the 2-block warehouse.

3. Results

In this section we derive the LST of the order picking time distribution in both single- (Section 3.1) and 2-block
warehouses (Section 3.2). Afterwards, in Section 3.3 we illustrate how these results can be applied to two well-known
storage policies. The analysis in this section is based upon the key assumption that the total order size follows a
Poisson distribution. Since the number of picks in the different (sub-)aisles follows a multinomial distribution with
the order size as number of trials, we have that the numbers of picks in the different aisles are independent under this
assumption and follow a Poisson distribution with parameter pi, jλ.
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3.1. Single-block warehouse
Recall the relation for the order picking time in Equation (2), which splits the order picking time in the picking

time contribution of the last aisle and the sum of the contributions of the previous aisles. The latter term is a random
sum of (k+ −1) i.i.d. random variables (Ti), hence deriving the distribution of the order picking time requires to derive
the distribution of both k+ and Ti. We start by remarking that k+ is the first aisle with picks coming from aisle k to
aisle 1. For the aisle contributions Ti, we notice that Ai is the furthest pick location in the aisle, i.e., Ai is the maximum
of Ni i.i.d. random variables. Therefore we have that: P(Ai ≤ x|Ni = n) = Fi(x)n. Using these insights we find the
following:

Lemma 3.1. The following equations hold:

P(k+ = j) = exp
(
− λ

k∑
i= j+1

pi

)[
1 − exp(−λp j)

]
for j = 1, ..., k, (4)

E[exp(−sTi)|k+ > i] = exp
(
− λpi −

2was
v

)[
exp
(
λpiΦP(s) −

2ls
v

)
+

2ls
v

∫ 1

x=0
exp
(
−

2ls
v

x + λpiΦP(s)Fi(x)
)
dx
]
,

(5)

and

E[exp(−sTi)|k+ = i] =
exp(2was/v)E[exp(−sTi)|k+ > i] − exp(−λpi)

1 − exp(−λpi)
. (6)

Proof. The first statement follows immediately from the fact that k+ is the right-most non-empty aisle in the ware-
house, combined with the fact that P(Ni = 0) = exp(−λpi).

For (5) we distinguish between the cases Ni = 0 and Ni > 0:

E[exp(−sTi)|k+ > i] = exp
(
− λpi −

2was
v

)
+ E[exp(−sTi)1{Ni > 0}|k+ > i]. (7)

For the second term we realize that, conditional on Ni, we have by partial integration that:

E[exp(−sAi)|Ni = n] = exp(−s) + s
∫ 1

x=0
P(Ai ≤ x|Ni = n) exp(−sx)dx.

Now using P(Ai ≤ x|Ni = n) = Fi(x)n and by summing over all possible values of Ni we find:

E[exp(−sTi)1{Ni > 0}|k+ > i] =
∞∑

n=1

exp
(
− λpi

)λn pn
i

n!
ΦP(s)n exp

(
−

2was
v

)[
exp
(
−

2ls
v

)
+

2ls
v

∫ 1

x=0
exp(−

2ls
v

x)Fi(x)ndx
]

= exp
(
− λpi −

2was
v

)[
exp
(
λpiΦP(s) −

2ls
v

)
− exp

(
−

2ls
v

)
+

2ls
v

∫ 1

x=0

{
exp
(
−

2ls
v

x + λpiΦP(s)Fi(x)
)
− exp

(
−

2ls
v

x
)}

dx
]

= exp
(
− λpi −

2was
v

)[
exp
(
λpiΦP(s) −

2ls
v

)
− exp

(
−

2ls
v

)
+

2ls
v

∫ 1

x=0
exp
(
−

2ls
v

x + λpiΦP(s)Fi(x)
)
dx + exp

(
−

2ls
v

)
− 1
]
.

Remark that the terms exp(−2ls/v) cancel and that, after substitution in (7), the −1 term cancels against the term for
Ni = 0, proving (5).

Lastly, for (6) we note that:

{
Ti

∣∣∣∣k+ = i
} d
=

{ Ni∑
m=1

Pm

∣∣∣∣∣Ni > 0
}
+

2l
v

{
Ai

∣∣∣∣Ni > 0
} d
=
−2wa

v
+
{
Ti

∣∣∣∣k+ > i,Ni > 0
}
. (8)
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Furthermore by deconditioning on the event Ni > 0 we find:

exp(2was/v)E[exp(−sTi)|k+ > i] = P(Ni = 0|k+ > i) + P(Ni > 0|k+ > i)E
[

exp
(
− s
(
Ti −

2wa

v
))∣∣∣∣k+ > i,Ni > 0

]
= exp(−λpi) +

[
1 − exp(−λpi)

]
E[exp(−sTi)|k+ = i],

where we used the distributional equality (8) and the fact that Ni is independent from the event k+ > i. Solving for
E[exp(−sTi)|k+ = i] now gives the desired result.

The results in Lemma 3.1 provide the main ingredients for the LST of the total order picking time. Starting from
(2), we sum over the possible values of k+. Since the aisle contributions, conditional on k+, are independent (up to
aisle k+) we have that the LST is simply the product of the transforms of each aisle contribution. In conclusion we
get:

Theorem 3.2. The total order picking time in a single-block warehouse, under return routing, has the following
Laplace-Stieltjes transform:

E[exp(−sT )] = exp(−λ) +
k∑

i=1

exp
(
− λ

k∑
m=i+1

pm

)[
exp
(2was

v

)
ψTi (s) − exp

(
− λpi

)] i−1∏
l=1

ψTl (s), (9)

where ψTl (s) = E[exp(−sTl)|k+ > l] for l = 1, 2, ...k, given in Lemma 3.1.

3.2. 2-block warehouse
The order picking time, T , in the 2-block warehouse still satisfies the relation in (2), where Ti is given in (3). The

main idea behind Theorem 3.2 therefore still applies, resulting in the same relation between the LST of the total order
picking time and the aisle contributions. The main difference between the transforms comes from the contribution of
each aisle, which we analyze by splitting this contribution into two independent parts: one for each block. This results
in Theorem 3.3.

Theorem 3.3. The total order picking time in a 2-block warehouse, under return routing, has the following Laplace-
Stieltjes transform:

E[exp(−sT )] = exp(−λ) +
k∑

i=1

[
exp
(2was

v

)
ψTi,1 (s)ψTi,2 (s) − exp

(
− λ(pi,1 + pi,2)

)]
(10)

× exp
(
− λ

k∑
m=i+1

(pm,1 + pm,2)
) i−1∏

l=1

ψTl,1 (s)ψTl,2 (s),

where:

ψTl, j (s) = exp
(
− λpl, j −

was
v

)[
exp
(
λpl, jΦP(s) −

ls
v

)
+

ls
v

∫ 1

x=0
exp
(
−

ls
v

x + λpl, jΦP(s)Fl, j(x)
)
dx
]
, (11)

for l = 1, 2, ...k and j = 1, 2.

Proof. By similar reasoning as in Lemma 3.1 we have:

P(k+ = j) = exp
(
− λ

k∑
i= j+1

(pi,1 + pi,2)
)[

1 − exp
(
− λ(p j,1 + p j,2)

)]
for: j = 1, ..., k. (12)

For the aisle contributions we note that Ti can be written as the sum of the contributions in the upper and lower block
and also split the horizontal travel distance contribution in two, i.e.:

Ti = Ti,1 + Ti,2 =

Ni,1∑
j=1

P j +
l
v

Ai,1 +
wa

v
1{i < k+} +

Ni,2∑
j=1

P j +
l
v

Ai,2 +
wa

v
1{i < k+}. (13)
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Observe that Ti,1,Ti,2 are similar to Ti in the single-block warehouse. In fact, they have the same distribution for
i < k+ when we take: wa/2, λpi, j and l/2 instead of wa, λpi and l. We can thus use the result in Lemma 3.1 for the
contribution of a single sub-aisle, resulting in (11). Again, these contributions are independent for i < k+ and hence
the transform of Ti,1 + Ti,2 is the product of the transforms: ψTi (s) = ψTi,1 (s)ψTi,2 (s). For i = k+ we, however, have to
be careful, since although Ni = Ni,1 + Ni,2 > 0, either Ni,1 or Ni,2 can still be zero. For this aisle, we remark:

E
[
exp(−sTi)

∣∣∣i = k+
]
= E
[

exp
(
− s
[
− 2

wa

v
+ Ti,1 + Ti,2

])∣∣∣∣∣i < k+,Ni > 0
]
.

Similar to (6) we apply the law of total probability. By independence of the Ti,1,Ti,2 we now find:

E
[
exp(−sTi)|i = k+

]
=

exp(2was/v)ψTi,1 (s)ψTi,2 (s) − exp(−λ(pi,1 + pi,2))
1 − exp(−λ(pi,1 + pi,2))

.

The denominator cancels against the term in P(k+ = i) and we therefore find the result as in the theorem.

3.3. Storage policy examples

We apply these results for two different storage policies. Firstly, we discuss the random storage policy, under
which each item in an order is uniformly located amongst and within the aisles. Under this policy, we therefore have
pi = 1/k and Fi(x) = x for all i. Substituting this in Theorem 3.2 results in the following expression:

Corollary 3.4 (Corollary of Theorem 3.2). Under the random storage policy the LST of the total order picking time,
for the single-block warehouse, is given by:

E[exp(−sT )] = exp(−λ)
{
1+ exp

(λ
k

)[
exp
(2was

v

)
ψTi (s) − exp

(
−
λ

k

)] 1 − exp(λ)ψTi (s)k

1 − exp(λ/k)ψTi (s)

}
, (14)

where:

ψTi (s) = exp
(
−
λ

k
−

2was
v

)
·

{
1 +

ΦP(s)λv
ΦP(s)λv − 2lks

[
exp
(λ

k
ΦP(s) −

2ls
v

)
− 1
]}
. (15)

Proof. Using pi = 1/k, Fi(x) = x in Theorem 3.2 gives:

ψTi (s) = exp
(
−
λ

k
−

2was
v

)[
exp
(λ

k
ΦP(s) −

2ls
v

)
+

2ls
v

∫ 1

x=0
exp
(
−

2ls
v

x +
λ

k
ΦP(s)x

)
dx
]

= exp
(
−
λ

k
−

2was
v

)[
exp
(λ

k
ΦP(s) −

2ls
v

)
+

2lks
ΦP(s)λv − 2lks

[
exp
(λ

k
ΦP(s) −

2ls
v

)
− 1
]]
,

which results in (15) by adding the terms. Next turning to (9) we use that ψTi (·) is the same for all i and hence:

E[exp(−sT )] = exp(−λ) +
k∑

j=1

[
exp
(2was

v

)
ψTi (s) − exp

(
−
λ

k

)]
exp
(
−
λ(k − j)

k

)
ψTi (s) j−1

= exp(−λ) +
[

exp
(2was

v

)
ψTi (s) − exp

(
−
λ

k

)]
exp
(
−
λ(k − 1)

k

) k−1∑
j=0

[
exp
(λ

k

)
ψTi (s)

] j
. (16)

Rewriting the geometric sum in (16) yields (14).

Note: From this equation one can find the first moment of T by evaluating the derivative of the LST at 0. The
resulting expectation coincides with the results in [8]:

E[T ] =
2lk2

vλ

[
1 − exp

(
−
λ

k

)]
+

2wa

v

[
k −

1 − exp(−λ)
1 − exp(−λ/k)

]
.
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In the 2-block warehouse the results are very similar: relation (14) still holds, yet now we have pi, j = 1/(2k).
Consequently, ψTi (·) is given by the square of the expression in (15) with k replaced by 2k and wa replaced by wa/2.
The square comes from the fact that ψTi,1 (·) and ψTi,2 (·) are equal.

In practice, warehouses often exploit knowledge on the demand of items. For example, storing high-demand
items in close locations results in lower order picking times. One well-known example of such a storage policy is the
class-based policy, see e.g. [6].

Under the class-based storage policy, each item is grouped in a certain demand class. In each aisle, these classes
are assigned different areas (see Figure 2). All items from a class are then located uniformly at random throughout
said areas in the warehouse. In Figure 2, this implies that all class 1 items lie within the darkest area, class 2 items
in the gray area and class 3 items in the white area. One can thus prevent long routes by placing high demand items
(class 1 items) close to the I/O point.

Below we provide a mathematical definition for class-based storage. We follow the notation and definition in [6]
and assume that there are a total of Q classes and write p̃q for the probability that an arbitrary item in an order is
of class q. We consider the case where each aisle consists of Q different ranges, one for each class. Let u(i)

q be the
upper-bound of the locations of type q items in aisle i, such that all class q items in aisle i fall between u(i)

q−1 and u(i)
q .

Here we use the notion that u(i)
0 = 0 and u(i)

Q = 1. We thus have that type q items make up a total of fq space, where fq
is given by: fq :=

∑k
i=1
(
u(i)

q − u(i)
q−1
)
.

Although the definition above is a special case of the class-based storage, it is known to provide optimal solutions,
w.r.t. the average route-length, for return routing when p̃1 > p̃2 > ... > p̃Q [6].

In case of 2 classes we can translate this to our model by noting:

pi =

2∑
q=1

P(item of class q)P(item in aisle i|item of class q) = p̃1 ·
u(i)

1

f1
+ p̃2 ·

1 − u(i)
1

f2
,

Fi(x) =
2∑

q=1

P(item of class q|item in aisle i)P(Location in aisle i before x|item of class q)

=


p̃1

pi

u(i)
1

f1
·

x

u(i)
1

=
p̃1

pi

x
f1

if x < u(i)
1 ,

p̃1

pi

u(i)
1

f1
+

p̃2

pi

x − u(i)
1

f2
if x ≥ u(i)

1 .

One can substitute these relations into Theorem 3.2 yielding the LST of the total order picking time. In fact, one can
analytically find the integral in (5) by splitting the integral in two parts, one for each class. The case for a general
number of classes follows similarly.

Remark: This class-based storage model is a continuous version of the model in [6]. By letting the number of
locations go to infinity, and appropriately scaling the probabilities, the model becomes equivalent to the one described
here.

4. Numerical Illustration

In this section we focus on the comparison of storage policies and different warehouse layouts. We do this by
numeric inversion of LST’s using the method of Abate and Whitt [13].

We consider a warehouse model with l = 20m,wa = 2.5m, v = 0.83m/s and let P ∼ Exp(1/5). For the class-
based storage policy, we consider the example in [6] for a 50/30/20 distribution of classes and a 20/30/50% of space
required per class, where k = 15 and λ = 10. We take the class-based areas as graphically given in [6]. For the
2-block warehouse we assign the same area division to the lower block and mirror the areas in the upper block, see
the illustration in Figure 2; the various colours indicate the regions in which the items of the corresponding class are
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stored. Besides the class-based storage, we also consider random storage. The picking time densities for these storage
policies are shown in Figure 3.

(a) Single-block warehouse.
(b) 2-block warehouse.

Figure 2: Illustrations of the class-based storage areas for the numerical example.
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Figure 3: Illustration of the density of the total order picking time under the Class-Based Storage and Random Storage policies.

We can see that the single-block warehouse is outperformed by the multi-block warehouse and the class-based
storage, in turn, outperforms the random storage policy. Similar comparisons have previously been found in literature,
yet the quantification that is allowed by knowing the complete distribution is new. For example the plots reveal a sim-
ilarity to the normal density. This similarity can be explained by relation (2), showing that the total order picking time
is a random sum of independent random variables. By the Central Limit Theorem for random sums of independent
random variables we thus know that the total order picking time distribution will converge to a normal distribution
when both k and λ go to infinity at the same rate [14].

5. Conclusion

In this paper we have derived exact formulas for the Laplace-Stieltjes Transform of the total order picking time
under return routing for a number of the most important storage policies, of which we discussed two in detail. The
formulas in this paper allow one to exactly determine the order picking time distribution and can therefore be used to
gain a deeper insight in the order picking problem, as is highlighted in the numerical results.
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The results in this paper exploit the independence between the aisles, which is a result of the assumption that the
order sizes follows a Poisson distribution. While restrictive, these results can also be used to approximate the order
picking time distribution when the order size follows a mixed Poisson distribution, by conditioning over the mixing
parameter and approximating the integral. This includes the case of a negative binomial distribution (mixed Poisson
in which the Poisson rate is Gamma distributed) or the case where the rate of the Poisson process (for the demand)
changes over time.

This paper restricts the derivation to return routing in single- and 2-block warehouses, but forms a foundation for
the derivation of the order picking time LST for multi-block warehouses or other routing policies. In particular, the
results can be generalized for midpoint, largest-gap and S-shaped routing in single-block warehouses deploying the
random storage policy. For more advanced storage policies, the formulas quickly tend to become computationally
involved. Furthermore, warehouses with multiple blocks can be considered. Yet, efficient routing policy definitions in
multi-block warehouses are scarce and often involve many steps and cases to take into account [15].

Finally, we emphasize that the results of this paper can be used for a large range of performance statistics. E.g.,
they can be used to obtain good bounds on the tail probabilities of the order picking time, as well as approximations
of the order-lead time distribution, viewing the order picking time as service time in a multi-server queue with c
pickers and applying a result of [16]. As a consequence, this paper allows for a more direct analysis of statistics in
warehouses, which enables a better comparison of warehouse storage policies.
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[10] C. Theys, O. Bräysy, W. Dullaert, B. Raa, Using a TSP heuristic for routing order pickers in warehouses, European Journal of Operational
Research 200 (3) (2010) 755–763. doi:10.1016/j.ejor.2009.01.036.

[11] K. J. Roodbergen, R. De Koster, Routing methods for warehouses with multiple cross aisles, International Journal of Production Research
39 (9) (2001) 1865–1883. doi:10.1080/00207540110028128.

[12] V. Gupta, M. Harchol-Balter, J. G. Dai, B. Zwart, On the inapproximability of M/G/K: Why two moments of job size distribution are not
enough, Queueing Systems 64 (1) (2010) 5–48.

[13] J. Abate, W. Whitt, The Fourier-series method for inverting transforms of probability distributions, Queueing Systems 10 (1992) 5–88.
[14] J. Shanthikumar, U. Sumita, A central limit theorem for random sums of random variables, Operations Research Letters 3 (3) (1984) 153–155.

doi:https://doi.org/10.1016/0167-6377(84)90008-7.
[15] K. J. Roodbergen, G. P. Sharp, I. F. Vis, Designing the layout structure of manual order picking areas in warehouses, IIE Transactions (Institute

of Industrial Engineers) 40 (11) (2008) 1032–1045. doi:10.1080/07408170802167639.
[16] M. H. van Hoorn, H. C. Tijms, Approximations for the waiting time distribution of the M/G/c queue, Performance Evaluation 2 (1) (1982)

22–28. doi:10.1016/0166-5316(82)90018-9.

9


