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Abstract

This paper is devoted to the theory of perishable inventory systems.
In such systems items arrive and stay ‘on the shelf’ until they are either
taken by a demand or become outdated. Our aim is to survey, extend
and enrich the probabilistic analysis of a large class of such systems.
A unifying principle is to consider the so-called virtual outdating pro-
cess V, where V (t) is the time that would pass from ¢ until the next
outdating if no new demands arrived after t. The steady-state density
of V is determined for a wide range of perishable inventory systems.
Key performance measures like the rate of outdatings, the rate of un-
satisfied demands and the distribution of the number of items on the
shelf are subsequently expressed in that density.

1 Introduction

Background and motivation. The theory of perishable inventory systems
(PIS) deals with one of the classical topics of stochastic operations research:
items of a certain type arrive at a collecting point from where they are taken
away by incoming demands. If an item stays too long it can become unus-
able due to random deterioration or a predetermined maximum expiration
time. The arrival intervals of items as well as those of demands may be
random or deterministic, in either case a controller may try to govern them,
and arrivals may also occur in batches. The standard real-world example
is of course a storage place for commodities, but other applications include
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blood banks, spot markets for special goods, distribution sites for transplan-
tation organs, or peer-to-peer lending agencies in the internet, where many
individual lenders deposit money for a limited period, which can then be
borrowed by debtors.

Our aim in this paper is to survey, extend and considerably supplement
and enrich the probabilistic analysis of a large class of these PIS. Over
the last four decades inventory models of this basic structure were treated
in hundreds of articles, textbooks, and monographs. In many examples the
system input is generated by replenishment orders of a controller who decides
about the timing of the orders and their sizes. The great majority of papers
studies optimization problems for this kind of systems, looking for optimal
ordering policies; see for example the monograph by Nahmias [27] and his
earlier review [26]. However, there is a second line of research dealing with
PIS with random input (without involvement of a controller) and focusing
on their stochastic analysis. That research is surveyed and expanded in this
paper.

The survey [19] contains a comprehensive section about the papers on
PIS with random input that were published until 2011. The authors of
the present paper were involved in many of the studies surveyed in [19]
and since 2011 have extended the earlier results in several directions, con-
tributing, jointly with various co-authors, more than 20 publications. This
survey provides a unifying presentation of the published material and also
develops several new model variants. Our approach also enables us to de-
rive additional results for models studied in the past. In view of space
constraints, the presentation of some of the new model variants necessar-
ily is rather concise. We plan to elaborate on these discussions in an ex-
tended version of the present paper, accessible as a Eurandom report via
https://www.eurandom.tue.nl/pre-prints/.

Motivation. The original motivation to consider PIS with external random
input (without ordering policies) was formed by blood bank systems in which
a random stream of blood donations serves as input and the output consists
of satisfied demands, taking away blood units, and outdated blood units.
Note that the maximum shelf life (sojourn time) of every blood unit is de-
termined by some external authorities; that is, every country or province has
its own health regulations regarding the expiration dates of the blood units.
Organ transplantation sites [8] constitute another application area. Organs
are removed from the bodies of just deceased people. In some countries this
is possible either after receiving permission from the family or because the
deceased had given permission while alive; in others it is mandated by law
that every citizen is a potential donor. Both the (usually deterministic) shelf



lifetimes of the organs and the random ”impatience times” (lifetimes) of the
waiting patients are finite. A spot market for perishable goods constitutes
another PIS with random input; the flower market in The Netherlands may
serve as a colorful example.

Methodology. Our main focus is always on the analysis of the station-
ary (long-run) behavior of the PIS in question, often leading to closed-form
expressions for the most relevant performance measures and functionals, or
their transforms. The obtained explicit formulas can subsequently be used
for numerical optimization of an objective (cost or profit) function. Cost
functions usually involve the holding costs of items, which makes it impor-
tant to study the distribution of the number of items in the system. Cost
functions will also typically take into account penalties for unsatisfied de-
mands and for outdatings of items.

Let us denote the above-mentioned number of items that are present in
the system (”on the shelf”) at any time ¢ by K (¢). In general K = {K (¢),t >
0} is not a Markov process, since at any given time ¢y the distribution of
(K (t))t>t, usually depends on the evolution of the process before ¢ty and
not just on K(tg) — indeed, the age of the items is important. One could
try to use supplementary variables to retain the Markov property, but the
resulting process would become too complex even for quite simple PIS. To
overcome this difficulty, we now introduce a one-dimensional process that
turns out to be Markovian in many PIS.

Let A = {A(t) : t € [0,00)} where A(t) is the age of the oldest item
on the shelf or, if the shelf is empty at time ¢, A(t) denotes a "negative
age”, defined to be minus the time it takes until the next arrival at the
shelf after time ¢. For simplicity assume that items expire at age 1. Then
set V(t) =1 — A(t); cf. Figure 1. A little reflection shows that V() is the
time that would pass from ¢ until the next outdating if no new demands
arrived after t. This ”virtual” process V. = {V(t),t > 0}, the so-called
Virtual Outdating Process (VOT), is closely related to K provided that any
newly arriving demand is always satisfied by the oldest item present, if at
all. Indeed, the shelf is empty if and only if the age of the oldest item is
negative (A(t) < 0, so V(t) > 1), and the number of items on the shelf
equals n if and only if n — 1 items have arrived during the age time interval
of the oldest item.

For all PIS models in this survey V turns out to be a key process. Under
certain Poisson-type assumptions V is a Markov process and, when the pro-
cess is stationary, a regenerative process. When its steady-state distribution
exists, it is characterized by an integral equation of the Pollaczek—Khintchine
type. This integral equation, a Volterra integral equation of the second type,
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Figure 1: A typical sample path of the age process A (top panel) and of the
VOT process V (bottom panel). A, (D) denotes the arrival time of the nth
item (demand); O; denotes the first outdating, and U; the first unsatisfied
demand; it coincides with Ds.



is for all x > 0 given by

r(z)f(x) = /0 pw)[l = G (L(z) = L(w))]f(w)dw + f(O)[1 = G(L(z))].
(1)

In (1) the function f(-) is the steady-state density of V and the functions
r(-), L(-), G(+), u(-) and k(-) are specific in every model variant. This equa-~
tion can be obtained by deriving the Kolmogorov forward equation for the
V process. Typically one can also obtain it via application of the Level
Crossing Theory (LCT) [11, 15]. LCT observes and exploits the fact that,
for the process V in steady state, the long-run average number of downcross-
ings of any level x per time unit is equal to the long-run average number of
upcrossings of that level per time unit.

For several model variants we shall show that the lefthand side of (1)
equals the rate of downcrossings of level x, and the righthand side the rate
of upcrossings of level x. In particular, we show this in some detail when
proving Theorem 3. Solving the integral equation yields the steady-state
density f(-) (or its Laplace transform). In several cases, we shall use that
result to also determine the steady-state distribution of the number of items
on the shelf.

An important observation, suggested by Figure 1 for the V process, is
that this process can be interpreted as the workload process of a specific
single server queueing system. Here the jumps upward indicate service re-
quirements of arriving customers, and the slope downward reflects the fact
that a server is working (in the figure: at a constant speed of one unit of
work per time unit). In addition, customers have a patience of length one;
they do not enter the system if their waiting time would be larger than
one (corresponding to unsatisfied demands). This observation allows us to
make use of methods which have been developed, and results which have
been obtained, for single server queues. It should be noticed that, in most
queueing systems, when the system becomes empty it stays empty until the
next arrival (an idle period); the graph for V can be viewed as representing
the workload in a queue after the idle periods have been removed and the
busy periods have been glued together.

Structure of the paper. In Section 2 we present a model description for a
large class of PIS, and we also introduce some preliminary results, including
a conservation law for the rate of the satisfied demands that is valid for all
model variants. In Section 3 we introduce a class of PIS models in which the
arrival processes of items and of demands are Poisson processes with rates
that depend on the current value of the VOT process. This model is stud-



ied in detail in Sections 3 and 4, along with several variants. In Section 5
we globally discuss PIS models in which the arrival process of items, or of
demands, forms a renewal process. Section 6 contains a detailed analysis of
three such models. Finally, Section 7 briefly mentions some model variants
and problems which in our view are of considerable interest, but for which
we lack the space to discuss them at length. This section also contains some
open problems.

2 Model description and preliminaries

We consider a perishable inventory system with infinite storage capacity,
in which input and demands are both random. Items arrive at the system
according to a point process Ny := {Ny(t),t > 0}. Each item has the same
deterministic usable lifetime, which w.l.o.g. is assumed to be one time unit.
Demands arrive according to a point process Np := {Np(t),t > 0}. Upon
arrival, a demand removes the oldest item in storage (‘on the shelf’), or
leaves unsatisfied if the system is empty (but in Subsection 6.2 we shall also
study a model in which demands are willing to wait). An item that has not
been taken within one time unit of arrival becomes outdated and must be
scrapped. The arrival processes of items and demands are assumed to be
independent. We assume for simplicity that the system is empty at time 0.

The process of outdated items is denoted by N := {Np(¢),t > 0}, and
the process of unsatisfied demands is denoted by Ny := {Ny(t),t > 0}. No
is a filtered process of N; and Ny is a filtered process of Np.

As will be seen in Theorem 2 below, if both N; and Np are Poisson
processes, then both Np and Ny are renewal processes. If N7 is a renewal
process but not Poisson, and Np is a Poisson process, then Np still is a
renewal process but Ny need not be a renewal process.

Let us assume that the following long-run arrival rates exist:

A timy o 2O = iy, ENO,
u d;f limy e NDt(t) — limy_yog ENtD(t)’
A+ et iy o Nof(t) = Timy_ o ENto(t)7
w def im0 NUf(t) = lim; oo M

The limits in the middle are almost-sure limits. A and p are the arrival



rates of items and of demands, respectively, while A* and p* denote the
outdating rate and the rate of unsatisfied demands. In all PIS considered in
this paper these rates will be seen to exist due to the underlying regenerative
structures.

Now let K (t) be the number of items in the system at time ¢. Clearly,
K(t) is equal to the number of items that have arrived up to ¢ minus the
number of items that have left until then, which in turn is the sum of the
number of outdatings and that of satisfied demands up to ¢. Hence,

K(t) = Ni(t) — [No(t) + Np(t) — Nu(t)]. (2)

Dividing both sides of (2) by ¢ and taking the limit as ¢ — oo yields the
following conservation law.

Theorem 1 (Satisfied Demand Conservation Law)
Consider a PIS for which Nt and Np are arbitrary counting processes and
M, pw* exist. Then

A=\ =pu—pu". (3)

The conservation law is intuitively clear: the left side represents the rate
of items that do not become outdated, while the right side represents the
rate of satisfied demands. The conservation law is very useful, e.g., when one
out of N; or Np is a Poisson process and the second is a renewal process.
Then, one process out of Np or Ny is a renewal process while the second
process is not, but at least its rate can be found by (3). The conservation law
shows that the higher the outdating rate, the lower the rate of unsatisfied
demands. Both a high outdating rate and a high unsatisfied demands rate
have their drawback; the conservation law reflects the trade-off between the
goals of efficient resource usage and customer satisfaction.

The conservation law (3) can be extended to the case in which either
arrivals occur as batches or every demand is for a batch of items. In the
latter case a demand can be either partially or fully satisfied. To see the
generalization, suppose that the demand batch sizes are i.i.d. (independent,
identically distributed) random variables with mean x. Then the balance
equation (1) becomes

A= XN =px —pt (4)

Applications of (3) and (4) occur in later sections.

Remark 1 Keeping in mind the definition of the age process that was in-
troduced in Section 1, it is readily seen that the following alternative repre-
sentation of the number of items K (¢) also holds:

K(t) =14 Ng(t) — Ni(t — A(t)), Vt>0. (5)



Note that Ny(t) — Ny(t — A(t)) is the number of items arriving during the
age of the oldest item at ¢t and that Ny is right continuous. This identity is
useful for determining the steady-state mean number of items on the shelf.

The case in which both N; and Np are Poisson processes is called the basic
PIS. Recalling our remark above on the connection to queueing systems, one
can view V for the basic PIS as the workload process of a certain M /M /1+D
queue in which customers do not wait more than D = 1 time unit for their
service and the idle periods are deleted. The following theorem explores the
probabilistic structure of the basic PIS, also allowing N; to be a renewal
process.

Theorem 2 If for a PIS Ny is a renewal process and Np is a Poisson
process, the number of items process K, the VOT process V and the age
process A are regenerative with the sequence of outdating times as regener-
ation points, and No is a renewal process. For the basic PIS Ny is also a
renewal process.

Proof. Consider the system at a time 7' (> 1) of an outdating. Looking
forward in time from 7', the times until the next arrival of an item and
until the next demand arrival do not depend on the prior history of the PIS
and are independent of each other, the first having the distribution of an
item interarrival time conditioned to be greater than 1 and the latter being
exponentially distributed with parameter u, and they are also independent
of T. Furthermore, the items that arrived in [T'—1,T') are still on the shelf,
and their number is independent of the past, its distribution being equal to
that of M = max{n : Xj + ... + X,, < 1}, where the X; are i.i.d. item
interarrival times (for the basic PIS this number is Poisson(\)-distributed).
Altogether this implies that T is a regeneration time for the processes K, V
and A, and the times between successive outdatings are i.i.d. Hence N is
a renewal process.

At any arrival time of an unsatisfied demand the shelf is empty, so that
for the basic PIS its future evolution depends only on the Poisson processes
of future item arrivals and demand arrivals, which are independent of each
other and, by their memoryless property, also independent of all past events.
Thus Ny is a renewal process for the basic PIS. m

In the present paper we shall devote much attention to the following
generalization that was instigated in [29]. Let the item arrival rate and the
demand arrival rate depend on the Virtual Outdating Time V'(¢), in the
following way:

Given that V(t) = z, the probability of one item (respectively demand)



arrival in the time interval [t,t + At) equals A(z)At + o(At) (respectively
p(x)At + o(At)), for At | 0; the probability of two or more such arrivals is
o(At).
It should be observed that one might be able to improve the performance
of the system by adapting A\(x) and p(z), which may be done by varying
the purchase price and the selling price. A controller might wish to choose
these rates in order to stay away from VOT level 0 (too many outdatings)
or level 1 (too many unsatisfied demands). Control based on the number of
items on the shelf might also seem natural, but it has the disadvantage that
K is not a Markov process.

In Section 3 we shall study PIS with such Markovian Arrival Processes

which we refer to as the M PIS,,;)/M PI1S),) model.

3 The MPISM(QC)/MP]S)\@) model

For the M PIS,,;)/MPIS)(,y PIS model let us consider the VOT process
V. Recall that items arrive with instantaneous rate A(z) when V() =
x, demands arrive with instantaneous rate p(z) when V(¢) = =, demands
arriving at an empty shelf leave unsatisfied, and any item that has not been
taken within one time unit after arrival becomes outdated and must be
scrapped. We note already here that for the calculation of the steady-state
density of V we may set u(x) = 0 for > 1, because a demand arriving at
some time ¢t when V'(¢) > 1 leaves unsatisfied and thus does not influence
the virtual outdating time at t.

Also for this PIS the process V is regenerative with outdating times as
cycle beginnings. The proof of Theorem 2 works almost verbatim, since at
any outdating time T the items on the shelf are the ones that arrived in
[T — 1,T), the evolution of V after T only depends on their ages and on
item and demand arrivals after T.

The mean cycle length is finite. To see this, note that since the prob-
ability of no demand arrivals in [T,7T + 1) is obviously positive, there is a
positive probability, say p > 0, that the next outdating occurs before T+ 1,
so that the time until the next outdating is bounded by a geometric random
variable with parameter p. Hence, the mean cycle length is smaller than
1/p. It follows that V is stable.

Alternatively to the VOT process of the M PIS,,(,) /M PI1S),) PIS model,
one could also speak of the workload process of a very specific M /M /1-type
queueing system with state-dependent customer arrival rate p(z) and state-
dependent service rate A(x), in which a customer arriving when the current



workload is w, say, causes the workload to jump upward to a new level that
has distribution function

21— e E@-LWl g s gy

where L(z) := [ A(y)dy. There are no idle periods in this queue, because
whenever the workload process hits zero, it immediately jumps upward to a
new level that has distribution function z — 1—e~(*) 2 > 0. We denote the
workload (or virtual waiting time, VWT) process of this queueing system
by V. In the case pu(z) = 0 for 2 > 1 there are no customer arrivals as long
as the workload stays above 1. Then the queue workload process has the
same law as the VOT process. This identity of distributions also occurs if we
modify the queueing system by adding the feature that customers who upon
their arrival encounter a workload larger than one do not enter the queue.
View the bottom panel of Figure 1 to see the equivalence between the PIS
sample path and the familiar workload sample path in a single server queue.

For the queueing system we do not need the restriction ;=0 on (1, 00).
However, we make the following
Assumption (i) p(x) is bounded and limg_,o0 () = 0,
Assumption (i) 0 < a < A(z) < b < oo for some a,b > 0.
Then the arrival rate is for large x always smaller than the service rate
minus a/2 (this ensures that A(z) — u(x) is bounded away from zero for
large x, which will be needed in the proof of Theorem 4), and the marginal
workload added at a customer arrival time is stochastically bounded by an
exp(a) random variable. Hence the VWT process is a regenerative process,
with the time periods between successive downcrossings of level 0 as cycles
having finite mean cycle length. This implies that the VWT process V is
stable.

Next we derive an integral equation for the steady-state density f () of
V, and use it to determine f(-) in closed form. Let M (z) := Jo m(w)dw.

Theorem 3 Let f(-) be the steady-state density of the VWT process V.
Then

fz) = /Dxu<w>e—[L<w>-L<w>1f<w>dw + f(0)e M, w>0. (6)

Proof. We use level crossing theory (LCT) to derive the Pollaczek-Khintchine
type equation (6). According to LCT, the rate of downcrossing any level
equals the rate of upcrossing that level. It is readily seen that the downcross-
ing rate equals f (z). We now show that the righthand side of (6) is equal
to the corresponding upcrossing rate. Given that the state is w € (0,x), a

10



jump occurs with instantaneous rate p(w), and it upcrosses level x if and
only if there were no item arrivals (in the PIS), while the VWT decreased
from x to w (which happens with probability exp —{L(x) — L(w)}), where
the same f (+) appears both in the lefthand side and in the righthand side by
PASTA. Level z can also be upcrossed just after V hits level 0. In this case
the probability to jump above z is exp{—L(x)}. By LCT the rate of hitting
level 0 is f (0). The theorem is proved by deconditioning with respect to the
position of V just before the jump. =

Remark 2 (i) The application of PASTA (Poisson Arrivals See Time Aver-
ages) is here somewhat delicate, because the arrival rate is state-dependent.
However, by taking fi := sup,>ou(r) < 0o we can rewrite the integral in

(6) as i J[y &5 #lw) o —[L(@)=L(w)] f(1)dw, thus we can assume that arrivals occur
according to a Poisson process with constant rate ji, while an arrival at ¢ is
admitted to the system with probability u(w)/f when V (t) =

(ii) Balance equations for the workload in single-server queues with state-
dependent arrival rate, service requirement rate and also service speed are
discussed in detail in Section 3.2 of Bekker [5]. He uses Kolmogorov forward
equations to derive such balance/integral equations. Apart from the techni-
cal issue of having deleted the idle periods, the above theorem follows from
his Formula (3.2). See also [6] for the case of state-dependent arrival rate
and service speed.

Theorem 4 The steady-state density f(-) of the VWT process V in the
MPIS“(I)/MPIS)\(I) model above is given by

. oL@ -M(@)]
f@) = & e LW -M)dy’

x> 0. (7)

Proof. Multiplying both sides of (6) by e ( ) and introducing g(x) =
f(x)e"®) | we obain the integral equation g(z = [y u( w)dw + ¢(0).
Differentiation yields a first-order differential equatlon and we readlly find
that

f(x) = f(0)eHA=ME, (8)
The normalizing condition fooo f (z)dx = 1 gives (7). Note that, by Assump-
tions (i) and (ii), we have [;° e EW-MWldy < co. m

Now let us return to the VOT process of the M PIS,,,)/MPISy PIS.
Since demands arriving while V(¢) > 1 have no bearing on the future evo-
lution of V we may replace the demand rate function u(x) by p(z) =

11



p(z)1o1)(z). Recall that this means that no demands enter the PIS as
long as the shelf contains no items. (In the queueing interpretation in this
case, customers who arrive and see a workload larger than one, i.e., would
have a waiting time larger than one, do not join the queue — this behavior
is called balking in queueing terminology.)

To derive the steady-state density of the VOT process, the only adap-
tation in the balance equation in Theorem 3 is that we have to replace the
upper integration value x by x A 1:

10 = [ s O i+ g0, 220 ()

This yields

Corollary 1 The steady-state density of the VOT process of the
MPIS, (5)/MPISy PIS is given by

ce” , 0<z<1
flz) = { o lL@-MM] 5 , (10)

where .

1 0o
. [ / L@ -M@)] gy 4 (M) / eL@)dx]
0 1

This result immediately gives us the following key performance measures:
(a) The long-run arrival rate of items is given by A = [~ A(z) f(x)dz.

(b) The long-run outdating rate equals f(0) = c.

(¢) The long-run arrival rate of demands is given by u = [ p(x) f(x)dz.
(d) The long-run rate of unsatisfied demands equals [ yu() f (z)dz, since all
demands that find the shelf empty (i.e., the VOT above 1) depart unsatisfied.

Remark 3 The time between two successive outdatings of items is a busy
period in the M PIS,,,)/MPISy)/1 queue with customer balking when
the waiting time exceeds 1. The lengths of successive busy periods, i.e., the
times between successive downcrossings of level 0, are i.i.d.; the outdating
times form a renewal process.

Remark 4 Consider a dual PIS (we speak of duality of type 1; later we also
introduce a duality of type 2) in which every demand is willing to wait exactly
one unit of time and an item that arrives and finds the waiting line in the PIS
empty of waiting demands leaves immediately. The abandonment of items
now is of the balking type, whereas the abandonment of the demands now

12



is of the reneging type: each demand is admitted to the system, but it has
a constant patience of length one and leaves unsatisfied when that patience
runs out. A little reflection shows the following: (i) the instants of jumps
are the times of item arrivals into the shelf, (ii) the jump sizes are the times
between successive demand arrivals, (iii) a downcrossing of level 1 is a time
of a first demand arrival into an empty waiting line, (iv) a downcrossing of
level 0 is a time of a demand leaving unsatisfied, and (v) the abandonments
of items occur when they arrive and find that V. > 1. From the above, we
immediately conclude that in the dual model the times between unsatisfied
demands have the same law as the times between outdatings in the primal
PIS where A(z) and p(z) are reversed.

We now consider a few special choices for A(z) and p(z). In all examples,
f(+) is the density of the VOT process, as given in Corollary 1.
Example 1: The case A(z) = p(x). In this case the constant ¢ of the

corollary becomes
(o'} -1
c= [1+6L(1)/ eL(‘”)dm} .
1

The density f is constant on (0,1). The steady-state distribution is a mix-
ture with weights ¢ and 1 — ¢ of the uniform distribution on (0, 1) and the
distribution on (1, 00) having density z —» e~ 1)/ I e LWdu, x> 1.
Example 2: The basic PIS. This special case was already treated in [20].
From (10) we obtain for A\ # u:

AN = p)e=A-we

)\—/.Lei()‘f'u) ) 0<z< ]-a
flz) = - (11)
AN = p)e A= H
N O x> 1.

In the case A = p it follows from Example 1 that we get a mixture of
the uniform distribution on (0, 1) and the distribution of 1 + Y where Y is
exp(A)-distributed. Once we know the steady-state density f(-), the rates
A* and u* are easily determined. The outdating rate is

AT = f(O) - ) — Me_()\_#)a
and by the conservation law
R )

13



The rate of unsatisfied demands p* can also be obtained in an alternative
way. By PASTA a demand is unsatisfied whenever it arrives at an empty
system, which implies that p* = p [° f(z)dz .

One could also derive the distribution of the time between two successive
outdatings by observing that this time is also the busy period in the M /M/1
queue with arrival rate p and service rate A, in which customers do not enter
the system if they have to wait more than one time unit; this busy period
has been studied in [20]. In the dual model introduced in Remark 4, the
same law holds with A and p reversed.

We next derive the generating function of the steady-state number of
items on the shelf. Use that

0, V() >1,
K(t) =
n, V(t) <1and n—1 arrivals during the age of the oldest item.

Define K and V as the number of items on the shelf and the VOT in steady
state. We have lim;_,o P(V(t) > 1) = P(V > 1) and (by dominated conver-
gence) limy_,oo E25®) = E 2K, |2| < 1, so that

1
EK =PV >1)+2 / e A=W =2) £ () dw, (12)
0

and by substituting (11) we obtain (for A # )

K _ (A—pe 1 A(1-w)(1-z2) | AA=p)e”A=mw
B = oo tedy TN S dw
(A= p)e= A=) Nzere—n
A — pe~(A=n) Az —p

Formula (13) is not contained in [20].

In many inventory applications, younger items on the shelf are worth
more than older items. In [28] the value of the inventory in steady state is
determined from an actuarial point of view. A function R(x) is introduced
that denotes the value of an item of age x. Let Z denote the steady-state
total value of all items in the system. If V' > 1 then the total value is zero.
Otherwise, if V.= w € (0, 1), let N denote the number of arrivals during the
age 1—w of the oldest item, and denote their ages by 1—w—Tn, ..., 1—w—T}
with T; the time between the arrival of the oldest item and the ith arrival.
Then Z = R(1 —w) + Z;VZI R(1 —w —Tj). Since the item arrival process is
Poisson, we can use a familiar property of the Poisson process: the arrival
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times of the N items are independent and uniformly distributed on (0, 1—w).
Hence
Ele 4|V = w] = E[e *F0=)GN (0,1 — w)],

where

U

v d
G(a,u) == / e RW) Y.
0
A straightforward calculation now yields, with f(w) being given in (11):
Ele %] =P(V > 1)

1 oo _ n

+ /OeaR(lw) nEZOeA(lw)()\(l n!w)) G"(a,1 —w) f(w)dw
)‘_Me'ui/\ ! - —w)—A(1-w)(1-G(a,1—w

- W+/O e ORI—w)=AA—w)(A=Glal=w)) r(y)dw.  (14)

Example 3: (see [29]) Let A\(z) = Xo(xA1)* and p(x) = po[1—(1—2)F], for
some positive numbers Ag, g, a and b. In this case we have for 0 < z <1,

A a+1 1—(1— b+1
L(z) = Oil , M(x)zﬂo[ b(+1x) ],
a

so that (with ¢ following by normalization)

Ho[l _ (1 _ x)b—&-l] B )\Oxa—&-l

<z<1
cexp { b1 a1 0=zt
fz) = \
1o 0
— - A -1 1.
cexp{b+1 o o(z )} T >

Example 4: Let A\(z) = Ao and u(x) = {43, for some constant b > 0.
Then L(z) = Xz and M(z) = 52 In(1 + bx), so that

c(1 + bx)rolbe=20 0 <z <1,

fz) =
c(1 4 byro/be=DoT = g > 1,

Example 5: Divide (0,1) in N intervals, and for the kth interval take
Az) = A\, and p(x) = pg, kK = 1,..., N. The expression for f(-) in (10)
is easily evaluated. This might be relevant in the case of blood donations
in a country or large city that is divided in a number of sections. In each
section there are independent Poisson streams of blood donations and blood
demands. By systematically adding and deleting sections a controller can
adjust the effective arrival rates of blood items and of demands, to reduce
the rates of outdated blood doses and of unsatisfied demand.
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Figure 2: Hysteresis with two switchover levels. The demand rate is uz, in
C', an interval from a downcrossing of a until the next upcrossing of b. The
demand rate is pug in C', an interval from such an upcrossing until the next
downcrossing of a.

4 Applications

In this section we consider several variants of the M P1S,,,)/M P1Sy,) PIS

model.

4.1 Variant 1 - Hysteretic control

This application is taken from [34].

Model variant. We consider a M PIS,,;)/M PIS),) PIS model in which
A(z) = A, and in which the p(z) function has the following special feature.
There are two switchover levels a and b, such that 0 < a < b < 1, and there
are two possible demand rates: iy and pug > pr. Whenever a downcrossing
of a occurs, the demand rate switches to py. It keeps that value until level
b is upcrossed; it then switches back to pp; etc. When one defines a cycle
C' as the period between two successive downcrossings of a, then each cycle
consists of (first) a subcycle C, with demand rate py and then a subcycle
Cpg with demand rate pg. See Figure 2. The VOT process V clearly is a
regenerative process with regeneration epochs the successive downcrossing
epochs of a. The difficulty in analyzing such a so-called hysteretic policy is
that it is not a priori clear whether the demand rate is pur or puy when the
VOT process takes a value between a and b.

Motivation. A reason for using this policy could be that it will have fewer
(possibly expensive) demand rate switches than if one would have no hys-
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teresis but different demand rates in the three intervals (0,a), (a,b) and
(b,1). A possible application is found, e.g., in bloodbanks where a con-
troller might wish to alternately include and exclude particular regions in
submitting blood demands (and possibly also blood donations), in a hys-
teretic way.

The VOT process. We construct two artificial regenerative processes from
the VOT V such that in each cycle V is split into two separate VOT pro-
cesses, Vy and V. Vi (V) is generated by deleting the Cgy (C) periods
from C and gluing together the C, (Cy) periods.

Key performance measures. We derive the steady-state proper (con-
ditional) densities fr(-) and fg(-) by using LCT, and by weighing them
appropriately we obtain f(-):

ECT,

_ ECH
f(x) - EC, + ECy

fL(Z') + EC, + ECyH

In the next lemma we first relate ECf, and ECy to fu(a) and fr(-), and
then we derive integral equations for fr(z) and fg(z) which can be solved
in a straightforward manner (first solving fr(x), then fy(x)) and finally
f(z) follows using normalization; we leave the details to the reader (see also
[34]). Define the constant w by

b
W= ML/ e A=) £ (w)dw + e f1(0). (15)
0
Lemma 1
ECy, _ fu(a) (16)
ECL+ECy  fu(a)+w
pr g e A fr(w)dw + e fL(0),  0<z<a,
fr(z) = (17)
nr fy e ME=W) £ (w)dw + e M fL(0) —w, a <z <D,
and
pm [ e @) fy(w)dw + fr(a), a<z<b,
fu(z) =

p [T e @) fp(w)dw + fr(a)e @0 b <

(18)
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Proof. We first prove (16). By LCT, w is the rate of upcrossings of level
b by V. However, level b is upcrossed only once at the end of the cycle
Cr. Thus, by LCT w = ELCL Similarly, level a is downcrossed only once

at the end of the cycle Cy, so that fy(a) = ﬁ By renewal theory, V is
a regenerative process whose successive cycles are composed of a C, period
followed by a Cpy period. Thus, % and % are the steady
state probabilities of the C, and the Cy periods, respectively. Formula (16)
follows.

The first relation in (17) is a simple level crossing identity, but the second
one is more subtle. Notice that for x € (a, b], with probability 1, the number
of upcrossings in every cycle of V; minus the number of downcrossings
equals 1, and that level b is upcrossed only once — at the end of Cp. By
LCT the rate of downcrossings of level z is fr(z) and in steady state, the
rate of upcrossings must be equal to the rate of upcrossings of level £ minus
w, which is the rate of upcrossings of level b. In terms of rates, we claim
that during the L periods for every a < x < b,

{downcrossing rate of x}= {upcrossing rate of 2} - {upcrossing rate of b}.

Note that as an intuitive consequence, the steady-state density fr(b) = 0
and by substituting x = b this is what we get.

Next consider (18). During the Cg periods there can be two types of
upcrossings of level © > a. Firstly there are Poisson(u ) jumps; those jumps
start at some level w > a. Secondly, at the start of each Cy period there
is exactly one jump above level b, that causes the transition from Cp, to Cy
period. The latter event has rate fr(a).

For the region x > 1 the first integral runs until 1, since jumps are not
admitted if they arrive to find Vg above level 1. =

4.2 Variant 2 - Obsolescence

This section is mainly based on [38] (see also [31]); it extends the former
paper by allowing state-dependent p(-) and by considering the joint distri-
bution of the number of obsolescent and non-obsolescent items.

Model variant. In this subsection we consider the M PIS,, /M PI1S) )
PIS model, where we restrict ourselves to A(x) = A while adding the fol-
lowing feature. So far, items that were not taken by a demand stayed on
the shelf until reaching their fixed expiration age of 1. In the present sub-
section we also allow the possibility that an item becomes obsolete, i.e.,

is no longer of use for any demand, before the fixed unit expiration time.
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We assume that obsolescence depends on the age, occurring at rate s(x) if
V(t) = x, for 0 < z < 1. That is, if the lifetime distribution of an item is
H(-) (ignoring the fact that an item that reaches age one is scrapped), then
s(z) = U0 /(1 - H(x)).

Motivation. In many medical and food applications of PIS, an item can
deteriorate while on the shelf.

The VOT process. By LCT we derive the following integral equation, of
Pollaczek-Khintchine type, for f(-):

Jo Tn(w) + s(1 — w)le Ml =HO=I f () du
F@)=q +f(0)e oIy, 0<z<l,

ceMz—1), x>1
(19)
where the constant ¢ can be found by the continuity condition f(1—) =
f(1+) and f(0) can be found by the normalizing condition [;° f(z)dz = 1.
To derive (19), suppose that V is at level w € (0, 1] at some time ¢, i.e.
the oldest item in the system is of age 1 — w. Considering Figure 3, it is
easily seen that there is an instantaneous upcrossing of level z at time ¢ if
and only if the following two events occur:
(i) The oldest item is removed either by an arriving demand or due to
obsolescence. The rate of this to happen is p(w) + s(1 — w).
(ii) None of the items that have entered the system during the time interval
(t—(z—w)—(1—x);t—(1—x)] is still present at time ¢ (as otherwise V (¢)
would still be less than x after the jump, see Figure 3). Conditioning on
the number of arrivals in an interval, the arrival times are independent and
uniformly distributed on an interval of length x — w, so that the probability
that all these items are gone at time ¢ is equal to

i Ay P =) (fo T H —w—wdu T e gy
vt n! T —w

Key performance measures. Let us first determine f(-) from (19). Introduc-
ing g(z) := f(z) exp(A [;[L — H(1 — y)]dy) for = € [0,1), the first part of
(19) reduces to

o) = [ lutw) + 501~ wlgwido +9(0), 0w <1,
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Figure 3: A typical sample path of the VOT process V in the case of random
item lifetimes. V' (0) = vy > 1 so that the first item arrives at time vg — 1.
The jumps at times t1, o, t3,t5 can be due to a demand or because the life
of the oldest item present ends at that time. The item that arrived at s;
becomes the oldest item after the jump at to. At t4 the oldest item becomes
outdated, leaving an empty shelf behind. A new item arrives at so, and it
is removed at t5 either by demand or because its life ends.

Differentiation w.r.t. z yields ¢'(z) = [u(x) + s(1 — x)]g(x), so
g(z) = g(0)elo W) +s(-y)ldy

and hence
F(@) = FO)el BWH0=A—HO—dy g <p 1. (20)

For x > 1 it is clear that f(z) = ce *®~1 = f(1)e=**=1), as no jumps can
occur in the VOT process for © > 1. f(1) is expressed in f(0) via (20), and
finally f(0) follows from the normalizing condition.

As in previous model variants, various performance measures can be ob-
tained once f(-) is known. Firstly, the outdating rate equals f(0). Secondly
we focus on the rate of unsatisfied demands. Using the conservation law
(3) with p = [ pu(z)f(x)dz and A* = f(0), the unsatisfied demand rate
is found to be p* = [° p(x) f(x)dz — X + f(0). Finally, we determine the
(generating function of the) steady-state joint distribution of the number of
non-obsolescent items Ko in the system and the number of items Ko that,
during the age of the oldest item, have left prematurely due to obsolescence.
The reasoning in Section 3 leading to (12) is still valid: the system is empty
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at time ¢ iff V'(¢) > 1, and if it is not empty and V(¢) = w € (0,1), then the
number of arrivals during the age 1—w of the oldest item is Poisson(A(1—w)).
The latter Poisson process is split into two independent Poisson processes,
with rates A f Low (1 — H(y))dy for the ones that have not become obsolete
and A fo )dy for the ones that have become obsolete. Hence we have,
with P(V > 1) =1—-F(1):

E[z{N020] =1 — F(1)

(21)

1 1-w 1—w
bz /0 expl—A(1 - 21) /0 (1= H(y))dy — A(1 — 2) /0 H(y)dy]f (w)duw.

Notice that z; = 2o = 1 gives (12), and that there is a factor z; in front of
the w-integral corresponding to the item with the oldest age (during whose
lifetime the other items have arrived).

We end this subsection by briefly discussing some choices for H(-). For
these choices, the above formulas may be somewhat simplified; in particular,

s(z) and integrals like fo (y)dy can be evaluated.

(i) If H(-) is uniform on (0, ) for some a > 1, then s(z) = 1/(a — x).
(ii) If H(z) =1 — (1 — z)? for 0 < o < 1 (triangular density), then s(x) =
2/(1—a).
(iii) If H(x) =1—¢e7 ",z > 0, then s(z) = 7.
(iv) If H(z) =x/(1 + x), x > 0 (Pareto), then s(z) = 1/(1 + x).
(v) The case H(z) =0 for x < 0, H(x) =qfor 0 <z <a and H(z) =1
for a < x < b < 1 is somewhat different. Here the maximum shelf life
alternates between two constants a,b, with 0 < a < b < 1. If an item has
reached age a, it is inspected. With probability p it is found to be good and
then b — a time units are added to its expiration date. But with probability
q = 1—p it is found to be unfit for issuance and it is removed from the shelf.
Observe that no item stays longer than b in the system; we can now take
V(t) = b— A(t). We refer to [33] for a detailed discussion of this case, when
p(w) = p. In the case of general p(-), the balance equations are readily seen
to be the following (notice that there are minor differences with Theorem 1
of [33], where in a few places a should have been replaced by b — a):

fx) = /xu(w)e‘“’(m‘w)f(w)dw+f(0)e‘m, 0<z<b—a, (22)
0

f(z) = /b_au(w)e)w(baw))\(I(ba))f(w)dw+f(o)e)\77(ba))x(:c(ba))
0

TAb
+ / pw(w)e @) f(w)dw + qf (b — a)+)e Ne==a) 5 5 p g,
b

—a
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Notice that b—a is a point of discontinuity for V, since pf((b—a)+) = f((b—
a)—). This is intuitive because the proportion between the downcrossing
rates of levels (b — a)— and (b — a)+ is p. The first equation is trivially
solved by first multiplying both sides by e*P* and then differentiating. The
second equation is solved by distinguishing between z < b and x > b. In
the latter case, f(z) = Ce™** for some constant C. In the former case,
multiplying both sides by e and differentiating results in a simple first-
order differential equation.

4.3 Variant 3 - Risk management

An event of unsatisfied demand could have serious consequences, e.g., in
organ transplant and blood bank settings. Hence a controller may want to
avoid unsatisfied demands, or even risky situations, as much as possible. In
this section we briefly discuss three possible strategies to accomplish this. In
each case we assume that item arrivals (regular ones, see below) are Poisson
() and demand arrivals are Poisson(\).

Model variant (i): Outsourcing; cf. [4].

In this variant, the possibility of unsatisfied demands is excluded by intro-
ducing an alternative source of fresh items that is completely reliable and
delivers with zero delay. When the shelf becomes empty, the controller places
an order at this source, and it instantaneously delivers a batch of ng items.
In the V process, after each upcrossing of level 1, the next ng demands do
not cause jumps in V as long as the age of these items is less than 1. If some
of the last of the ng items become outdated at age 1, the next demand does
cause an exp(A) jump. However, if that jump happens to be larger than 1,
it is cut off in the V process by 1 and again ng items are ordered.

The VOT process. A typical realization of the V process is shown in the
top panel of Figure 4. Note that the demand process is a Poisson process
with rate u, but the jump process of V is not a Poisson process. In order to
cope with this situation we apply a duality argument, called duality of type 2,
in which we first look at the age process A, with A(t) = 1-V (¢). The original
process (V (t) in the top panel of Figure 4, with steady-state density f(-))
is a regenerative process whose cycle is the time between two downcrossings
of level 1. Construct a new process W, with steady-state density fw(-),
in the following way. Every trajectory of slope 1 in A becomes a jump to
the same level in W and every negative jump in A becomes a trajectory to
the same level in W. Now, the A process is a regenerative process whose
cycles are the times between two successive downcrossings of level 0. The
sample path of W is the same as that of a finite dam (queueing) model in
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Figure 4: A typical sample path of the VOT process V (top panel), the
age process A (middle panel) and the transformation into the process W
(bottom panel), for the case of special deliveries with ny = 4. The dots
correspond to demand arrivals that take one of the instant delivery items.
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which the distribution of the first jump in a cycle is different from that of the
other jumps. The first jump size is the sum of ng exp(\) distributed random
variables, hence Erlang(ng, ), but the jump is truncated (if necessary) at 1.
All other jumps are exp(\) distributed. Also, the idle periods are deleted.
Key performance measures. For the steady-state density f(-) of V we
have, for all 0 < z < 1:

no—1

e = 50 =a) = [ fyapdu o) Y- L o)

J=0

By introducing g(z) := eM* fy(z) and differentiating w.r.t. z, we obtain a
simple first-order differential equation which is readily solved (we leave the
details to the reader):

R~ ()

j=

Since f(x) = fw (1 — z), we now also have f(-), and one can subsequently
obtain other performance measures. In particular, the conservation law
becomes

p=A+nof(1) ~ fO)EJ, (24)

where J is the number of items that are outdated when V reaches level 0,
and this yields E J. The reasoning behind (24) is the following. Since there
are no unsatisfied demands, the satisfied demand rate equals p. This should
equal the item input rate A + ngf(1), minus the rate of outdated items.

Some interesting performance measures which were not discussed in [4]
are: (i) The distribution of the number of items which are on the shelf in
steady state. Here there could be several oldest items. (ii) The distribution
of the number of items that are outdated when V reaches level 0. (iii) The
distribution of the busy period; it can be obtained via a martingale argu-
ment.

Model variant (ii) : Urgency Classes; cf. [4]

In this variant it is not possible to place additional orders. The incoming
demands are classified into different categories of urgency. For simplicity,
assume that there are two such categories whose demand arrival times form
independent Poisson processes of intensities p1(w) and pa(w), respectively;
item arrivals are Poisson(\). One possible policy is to satisfy high-urgency
(type 1) demands whenever possible (i.e., if the system is not empty) and
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less urgent demands (type 2) only if there are at least mp > 1 items on
the shelf. An undesirable aspect of this policy is that it does not take the
lifetime of the oldest item into account. For example, under this policy the
oldest item will not be used for a less urgent demand even if its residual
lifetime is very short, so its outdating is imminent. To avoid this drawback,
we propose the following policy refinement. Fix v € (0,1) and an integer
mgo > 1. A demand of type 1 is satisfied if and only if the system is not
empty; a demand of type 2 is satisfied if and only if there are at least mg
items in the system or the shelf age of the oldest item is at least 1 — . Any
demand of type 1 or 2 that is not immediately satisfied is lost. This model
was studied in [4] for the case pi(w) = p1, pe(w) = po.

The VOT process. It is readily seen that the VOT density f(-) satisfies
the following balance equations:

flx) = /Ox(ul(U)) + pp(w)e AT fw)dw + f(0)e ™, 0<z <,

flz) = /O ' p1 (w)e M=) £ (w)dw + 07 i (w)e ™) £ () duw
+ i%):_le—A(l—x)()‘(li_!x))l/,y ,LLQ(w)e_)\(m_w)f(w)dwJrf(())e_)‘m, N<z <,

1 Y
fla) = / p (w)e ) f (w)dw + / pa(w)e M) f(w)dw + f(0)e ™, x> 1.
0 0

The first equation can be solved easily by multiplying both sides by e** and
differentiating. The third equation shows that f(z) = ce™* with ¢ some
constant. The second equation can be formally solved via the technique of
Picard iteration; this method is discussed in some detail in Section 5. In
the, not unrealistic, case that the ratio p;(w)/u2(w) is constant, the equa-
tion can be solved more explicitly, using the same approach as for the first
equation.

Possible extensions which were not treated in [4] are: (i) the distribution of
the number of items on the shelf; taking lead times for special orders into
account.

Model variant (iii): Risk management. In this third model variant, we
assume that the controller carries out the following policy. When only one
item is on the shelf when a demand arrives, the condition of that demand
(e.g., a person requiring blood or an organ) is inspected. The demand is
diagnosed with probability p as urgent, and then the demand is immediately
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satisfied. If it is diagnosed as non-urgent, the demand is released unsatisfied.
The VOT process. The balance equation in this case is easily seen to be

pp [ [y e =) f(w)dw + (1 — z) [ e 2379 f(w)dw]
e NE) N fw)du + F(0)e perst
flz) =
Up fol e A=W £ (w)dw + £(0)e ", x> 1

Indeed, for 0 < z < 1 let S be the jump size, which is the generic time
between arrivals at the shelf. By conditioning on both V' = w and on the
number Nj of items seen by the arriving demand we get for 0 < x < 1:

f(z) :,up/om]P’(S >1—w|N/(1—w)=0)P(N;(1—-w)=0)f(w)dw

+ ,up/xIP’(a:—wSS<1—w]NI(l—w)zl)P(NI(l—w)zl)f(w)dw
+ u/ Z]P’:E—w<5<1—w|N1(1— w) = n) P(N1(1 — w) = n) f(w)dw.

The first conditional probability given N;(1 — w) = 0 is equal to 1, since
the events {N;(1 —w) = 0} and {S > 1 — w} are equivalent events. In the
second line S, given {N;(1 —w) = 1}, is uniformly distributed on (0,1 — w)
and in the third line S given {N;(1 —w) = n} (for n > 2) is stochastically
equal to the minimal order statistic taken from a uniform distribution on
(0,1 —w). Note that the second and the third lines are separated from each
other, since the demand rates are up and p respectively. The above equation
thus becomes, for 0 < z < 1:

fl@) = pp [y e f(w)dw + pp [ =2 TN - w) f (w)dw

" o] 733 n—1 —A(1—w) _w)n-1
+ Mfo nz (11—w) . (n[i(ll)[ ) f(w)dw

The proof is completed after some simple algebra and the fact that for z > 1
an upcrossing means that an arriving demand sees only one item on the shelf
and is satisfied by it.
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Remark 5 A weakness of the policy is that it does not take the age of the
oldest item on the shelf into account. Suppose that, when a demand arrives,
the age of the oldest item is close to 1. If the demand is not satisfied by
the oldest item, the item will become obsolete very soon anyway. Thus, it
would be reasonable to issue the item regardless of the demand’s condition.
Accordingly, it is natural to fix a certain switchover level, say a, such that if
the age of the item is greater than 1 — a (alternatively, V' < a), the demand
will be satisfied even if it is the only item present on the shelf. We distinguish
between two cases: if just before a moment of demand arrival, there is one
item on the shelf the demand is satisfied by the item with probability p; and
the shelf becomes empty. But if just before a moment of demand arrival,
there are at least two items on the shelf the demand is satisfied by the oldest
item with probability po and immediately after the issuance only one item
is left on the shelf. It is not hard to derive the integral equation for density
f(+) for this adaptation.

Finally we refer to Balcioglu et al. [3] for a risk management study of a
basic PIS with a demand rate that is either high or low depending on the
value of V.

5 PIS Models with renewal arrival processes

This section is devoted to the M PIS,,(,)/G PIS, a model in which the item
arrival process is a renewal process, while the demand arrival process is a
Poisson process with rate p(z) when the age is 1 — z. Let G(-) denote the
distribution of the i.i.d. item interarrival times. As before, we assume that
each item has a usable lifetime of one time unit and that, upon arrival, a
demand removes the oldest item on the shelf — leaving unsatisfied if the shelf
is empty. An item that has not been taken within one time unit of arrival
becomes outdated. Finally, the arrival processes of items and demands are
again assumed to be independent.

This model is studied in [21], for the case p(w) = p. In the present
section we first derive an integral equation for the steady-state density f(-) of
the VOT process V for general p(-), and we subsequently outline its solution.
Thereafter, we restrict ourselves to pu(w) = p, in which case the solution of
the integral equation becomes more explicit. We also express the distribution
of the number of items on the shelf into f(-). Three natural applications of
MPIS/G and M /G PIS models will be discussed in Section 6.
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Again consider the age process A and, in particular, the VOT process
V, where V(t) = 1 — A(t). Since we allow no patience of demands, the
steady-state density f(-) of V always exists. To determine it, we can again
take p(w) = 0 for w > 1, because a demand arriving at some time ¢ when
V(t) > 1 leaves unsatisfied and thus does not influence the virtual outdating
time at ¢t. A level crossing argument readily yields that f(-) satisfies the
following integral equation:

x Al
f(z) = /0 (W) (1 = Gz — w)) f(w)dw + FO)(1 - Ga)), > 0. (25)

Notice that the case G(z) = 1 — e ** was treated in Corollary 1 (in fact,
we there allowed \(+)); for that exponential case, a straightforward solution
procedure is to multiply both sides by e**, after which differentiation results
in a simple first-order differential equation. That approach breaks down
for general G(-). However, there is a standard (albeit somewhat formal)
solution procedure, Picard iteration, for such Volterra integral equations of
the second kind (see, e.g., Chapter I of [25]). We now outline that procedure.
Let K(z,w) := p(w)(1 — G(x — w)) for 0 < w < z. Then (25) becomes:
f@) = [§ K(z,w)f(w)dw + cK(z,0), where ¢ := f(0)/u(0). Iteration
yields:

flz) = cK(:):,O)—i—c/OxK(:n,w)K(w,O)dw

oo Kew) [ KepKeoddor (20)
0 0
Introducing K (z,w) := K(z,w) and Ky(z,w) := [ K,_1(x,2)K(z,y)dz
forn =2,3,..., one can verify that f(x) is given by the following convergent
sum: -
f(z) :cZKn(x,O), x> 0. (27)
n=1

Now take u(w) = pfor 0 < w < 1, and pu(w) = 0 otherwise. Kaspi and Perry
[21] exploit the fact that the VOT process now coincides with the above-
mentioned workload process in an M/G/1 queue with restricted accessibility
and deleted idle periods. Using a result of Daley [14] for the so-called finite
dam, they find the distribution F(z) = [ f(w)dw. With 1/X the mean of
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G(-) and n* denoting an n-fold convolution, their Formula (3.21) states that

F(z) = =00+ , 0<z <1,

ZSLO:O f()l— [7“(;77“)}” e,u(lfu)dGn*(u)

T 1
F(x) = M/o /0(1 -Gy — ) f(u)dudy, =z >1. (28)

%Zoo z [—;1(9;7'—7«0]” eMeE=w) qG™* (1)

When G(-) ~ exp(A), this expression is readily seen to simplify to (11).

Repeating an argument that was already used for that exponential G(-)
case, we can also find the distribution of the steady-state number of items
on the shelf:

1
P(K =n) — /0 GOV (1 ) — G (1 — w)] fw)dw, n=1,2,...,
P(K=0) = 1-F(1). (29)

Remark 6 It would also be interesting to study PIS models in which the
item arrival process is Poisson but the demand arrival process is not Poisson
but a renewal process. The LCT approach now breaks down: jumps do not
occur according to a Poisson process, so PASTA does not hold and the VOT
at a jump epoch is not the same as the steady-state VOT. We briefly sketch
an approach that one can follow in this case. Just like in Subsection 4.3,
see in particular Figure 4, one could construct a new process W from A
by replacing upward trajectories with slope 1 by upward jumps to the same
level, and downward jumps by downward trajectories of slope —1 to the
same level. This so-called duality of type 2 results in an artificial M P1S/G
process W with the same steady-state law as V. The balance equations for
that M PIS/G model can be derived using LCT.

6 Renewal arrivals: Three variants

In this section we discuss three PIS models that may be viewed as special
cases of M PIS/G models. In Subsection 6.1 we consider PIS models with
batch arrivals of either items or demands. Subsection 6.2 is devoted to the
case in which demands are willing to wait. In Subsection 6.3 we take a
closer look at intervals between successive outdatings and intervals between
successive unsatisfied demands when item arrivals follow a renewal process.
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6.1 Batch arrivals

In this subsection we briefly discuss three different cases in which items
and/or demands arrive in batches.

Case 1: Poisson(\) item arrivals and Poisson(u(x)) demand arrivals; de-
mands arrive in batches (cf. [21]). Let 0,, be the probability that the demand
batch size equals n, n = 1,2,..., with generating function J(-). This case
basically is a special version of the M /G model studied in Section 5, with the
jump sizes being a random sum of exp(\) random variables with distribution

G(z) = [§ 30 Opre™ (’\Tf):;i,l dt. There are two exceptions to this: (i) if
the jump size is above level 1 then the overflow above 1 is always just one
exp(A) phase; and (ii) the jump from zero is also exp()\), since such a jump
is not due to a demand. In passing we observe that G(-) is a phase-type
distribution, with LST J (/\J%a) We also observe that a batch demand can
alternatively be viewed as a single demand for a random number of items.

The balance equations for the density f(-) of the VOT process are given

@) = /Oxu(w)[l—G(x—w)]f(w)derf(O)e”, 0<a<t,
@) = /0 uw)[lL - G(1 — w)le D f(w)dw + f(0)e ™, = > (30)

One could solve the first equation using the Picard iteration outlined in
Section 5, while the second equation immediately translates into f(x) =
ce™*? for some constant c. If6,, = (1—a)a™ ! forn = 1,2, ... (i.e., geometric
batch sizes), then 1—G/(z) = e=(1=9% and it is straightforward to determine
f(+) more explicitly.

Remark 7 If items arrive according to a renewal process with distribution
S(-) and demands arrive in batches according to a Poisson process, then the
above phase-type G(-) is replaced by a more general G(-) with density g(-).
Formula (30) becomes

fx) = /Oxu—G(z—w)}f(w)dww(om—s<a:>], 0<a<l,

1 1 o0
z) = " (y —w)[l — S(z —y)]dyf(w)dw 0)[1 — S(z)],
f() /{)/y:w;g (y— )L - S(z — y)ldyf(w)dw + FO)[1 — S(x)

Here g"* denotes the n-fold convolution of the density g(-), and ¢%*(-) = 1.
The resulting integral equation can again be solved via Picard iteration.
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Figure 5: A typical sample path of the VOT process V (top panel), the
age process A (middle panel) and the transformation into the process W
(bottom panel), for the case of batch arrivals of items.



Case 2: Poisson(\) item arrivals and Poisson(u) demand arrivals; items
arrive in batches. Successive item batch sizes Ji, Jo, ... are i.i.d., with gen-
erating function J(-). In Figure 5 we display the VOT process V and the
age process A in the top and middle panel. All the dots in those two panels
occur at times of satisfied demands — except for the dot at A(t) = 1. In the
figure we have J; =4, Jo =2, J3 =6 and J4 > 3; observe that J; may have
been larger than 3, because the VOT jumps up from 0 at an outdating, and
if J4 > 3 then more than 3 items are simultaneously outdated. The jump
process is not a Poisson process, since only the last item in the batch is
accompanied by a jump.

Just like in Subsection 4.3 we apply the duality of type 2: every nega-
tive jump in A(t) becomes a trajectory with decreasing slope of rate 1 in
W (t) and every trajectory with increasing slope of rate 1 in A(t) becomes
a positive jump in W(t) (cf. Figure 5). LCT implies that the processes A
and W have the same steady-state law, since by the above construction the
numbers of up- and downcrossings of every level x > 0 in both processes
are the same for every realization. The process W describes a finite dam
model with Poisson arrivals of rate A and the jump sizes have a phase-type
distribution G(-) with LST J(QLW) That is, the LST of the jump size is
the generating function of a random sum of exp(u) random variables. Also
note that the emptiness period in W is exactly the time during which the
shelf is empty in A. We can now apply LCT to the W process and thus get
the following balance equation for its steady-state density fu(-):

fw(z) = )\/[1 — Gz —w)|fww)dw +me™®, 0<z <1, (31)
0

where the probability of an empty dam

o /A __fw(0)
VA+1/fw(0)  fw(0) + X

In principle (31) can be solved via Picard iteration. One additional equation
is provided by the normalizing condition:

/01 fw(z)de =1— .

Finally, by the duality construction of W (t) from V'(t) we get the density
f() of V from fi(-): f(z) = fw(1—z) for 0 <z < 1 and f(z) = e~ =1
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for x > 1 (recall that the overflow above level 1 in V is exp()\)).

Case 3: Poisson arrivals of item batches and Poisson arrivals of demand
batches. We assume independence of the arrival processes and of the various
batch sizes. Furthermore, item batch sizes are geometric(~yr) distributed,
and demand batch sizes geometric(yp); i.e., a generic item batch size B
has distribution P(B; = n) = v;(1 — )" ', n =1,2,..., and similarly for
a generic demand batch size. This case was discussed in [16]; they focus on
the busy period, and not on the steady-state analysis of V. A generic item
batch size By is smaller than or equal to a generic demand batch size Bp
with probability p, where it is readily verified that p = m. Hence a
demand arrival epoch is with probability 1 — p not accompanied by a jump.
By the memoryless property of the geometric distribution, the residual size
of the partially taken item batch again is geometric(ys) distributed, and
so forth. Similarly, if the demand batch size is strictly larger than the item
batch size, then the batch demand is only partially satisfied and the residual
size of the demand batch again is geometric(yp) distributed, and so forth.
A conclusion from the above is that we again almost have the basic PIS, in
which now jumps upward form a Poisson process with rate up and the jump
sizes are independent and exp(A(1 — p)) distributed. The two exceptions
are: (i) a jump size from 0 (after an outdating) is exp(\) distributed and
(ii) the overflow is also exp(\). Accordingly, we get the balance equations

Jo mpe™ =A@ fw)dw + f(0)e, 0<z <1,

flz) =
fol ppe MN=P)A=w)=A@=1) £ () dw + f(0)e ™, 2 > 1.

f(z) can be easily determined from these equations (again multiplying both
sides of the first equation by e’* and then differentiating).

Conservation law of satisfied demand. We have

A= f(0) _ pF(1) - f(1)(1 = D)
VI YD '

Indeed, the lefthand side represents the rate of not outdated items. The
righthand side is the rate of all the demands that arrive when the VOT is
below level 1, with one correction: An upcrossing of level 1 means that a
residual amount of the arriving demand batch (which is still geometric(yp))
is unsatisfied, except if Bp exactly equals Bj. The probability of the latter

event is p(1 — vyp). Hence % =1—-1p.
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6.2 Demands that are willing to wait

Model variant. Perishable items arrive at the shelf according to a re-
newal process with interrenewal time distribution G(-), having mean 1/\.
Demands for items arrive according to a Poisson process with rate u, inde-
pendent of the item arrival times. A demand that upon its arrival finds the
shelf of items not empty is satisfied immediately by the oldest item present.
Demands that arrive at an empty shelf join the line of waiting demands;
newly arriving items are assigned on the spot to waiting demands on a first-
come-first-served basis. It should be observed that the main difference with
all previously discussed models is that here demands are willing to wait.
FEach demand possesses its own random patience time. Denoting by P,
the patience time of the nth arriving demand, we assume that Py, P, ... is
a sequence of i.i.d. positive random variables which are independent of the
arrival times of items and demands. P; has distribution H(:), with mean
1/n. If the waiting time of the nth demand exceeds its patience, then it
abandons the waiting line without receiving an item. The shelf lifetime of
the stored items, i.e., their maximum usage time, is (as before) set to 1.
Thus, each item is stored until it either satisfies some demand or, after one
time unit on the shelf, is outdated (and then scrapped).
Motivation. This type of model occurs, e.g., when persons demand an
organ, or a portion of blood. In both cases, the demanded item can only
be stored for a limited amount of time. The organ transplantation problem
and the blood transfusion process have been captured in various stochastic
models. For further references see [42] for an excellent introduction to the
modeling of live organ transplantations by means of a waiting list, see [36]
for another paper on PIS with demands that are willing to wait, and see
the paper [8] on which the present subsection is based. The model that we
discuss here captures the essential aspects of the organ transplantation pro-
cess, while ignoring some aspects which are relevant in the blood transfusion
process (like the fact that not all types of blood are of use for a patient).
The VOT process. Again let A(t) denote the age of the oldest item on
the shelf at time ¢, and let V(t) =1 — A(t). The VOT process V again is
a Markov process. It can also be interpreted as the workload process in an
M/G/1+ G queue — a queue with Poisson(u) arrivals, service requirements
with distribution G(-) and patience time 1 + P,. If the idle periods in such
a queue are deleted and the busy periods are glued together, a workload
process results which has the same law as V. See Figure 6 for a graphical
representation of the age and the VOT process. Once again applying LCT,
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Figure 6: a typical sample path of A(t) and the corresponding sample path
of the VOT. A,, (D,,) denotes the arrival time of the nth item (demand); P,
denotes the patience time of the nth demand, and O, the time of the nth
outdating.
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it follows that the stationary density f(-) of V satisfies the integral equations
i fIT = Glo — w)]f(w) dw+ FO)[1 - G(x)), 0<z<1,

f@) =14 pfyll - Gla—w)f(w) dw+ fO)[L - G(x))

+u {1 -G —w)l-Hw-1)]f(w) dw, z>1.
(32)
If the arrival times of items form a Poisson(\) process, then the VOT is the
workload process in an M /M /1+ G queue with deleted idle periods. Solving
for f(-) in (32) with 1 — G(z) being replaced by e **  we obtain (see also
Section IV of [2])

koe~(A—mz 0<ax<,
f(z) = (33)
kiexp{—[Az —p [ (1 - H(z—1))dz]}, =>1,

for certain constants ko and k;. To find ky and k; note that f(x) is con-
tinuous at 1. We get kg = kie* and kg can be easily calculated via the
normalizing condition for f(-):

ko = [/01 e~ Az Qg et /100 exp {—[)\ac — u/lm(l — H(z — 1))dz]} dx] 71.

The workload density f(-) for general G(-) and H(-) can be obtained from
(32) in the following way: (i) solve the integral equation (32) in the interval
[0, 1] via Picard iteration (in terms of an infinite series of convolutions and
the constant f(0)); (ii) insert this solution in the equation for x € (1, 00),
which can then also be solved in terms of an infinite series of convolutions in
which the first series occurs as under the integral sign; and (iii) determine
f(0) from the normalization condition [;° f(x) dz = 1. We refer to Section
4 of [8] for a different approach. There V is decomposed into two processes,
which are constructed by deleting the time periods in which V > 1 respec-
tively V. < 1. The first process is then related to a so-called finite dam,
and the second process, decreased by one, represents the workload in an
M/G/1+ G queue with deleted idle periods in which the first service time
of a busy period has a different distribution. The densities of those two
processes are subsequently determined.

Key performance measures. The rate of item outdatings is given by

A* = f(0). The rate of unsatisfied demands equals p* = p — A + f(0). By
LCT, the rate of item arrivals at an empty system equals f(1).
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We next focus on the steady-state number of items K on the shelf. This
number is zero when V > 1, and otherwise it equals one plus the number of
item arrivals during the age of the oldest item. Hence

o0 1
E K = / f(x) dz + / Zz" P(n — 1 arrivals in 1 — z) f(z) dx
1 0 p=1

00 1
= x) dx (G — ) — G — o x) dz.
_/lf()d+/0;(G (1-2)— G™(1—1))f(z) d

(34)
When items arrive according to a Poisson(\) process, the sum over n be-
comes ze A1=2)1=2) We refer to [8] for a study of the steady-state waiting

time of demands, of the long-run fraction of time the shelf is empty, and of
the outdating process. The number of waiting demands has been studied in
the setting of the M/G/ + G queue, cf. [9].

6.3 Outdating and unsatisfied demands in the M/ /G PIS model

Model variant. In this subsection we again have Poisson(u) demand ar-
rivals while item arrivals form a renewal process with renewal distribution
G(-). As before, we assume that each item has a usable lifetime of one
time unit and that, upon arrival, a demand removes the oldest item on the
shelf — leaving unsatisfied if the shelf is empty. An item that has not been
taken within one time unit of arrival becomes outdated. Finally, the arrival
processes of items and demands are again assumed to be independent.

We already know how to obtain the density f(-) of the VOT process,
but in this subsection we shall exploit its knowledge only in a few places.
We shall mainly focus on the following three performance measures, and on
some useful techniques for analyzing them: The time between two successive
outdatings, the time between two successive unsatisfied demands, and the
shelf emptiness period.

The distribution of the time between two successive outdatings.
As observed before, the time between successive outdatings is a busy period
in the M/G/1 + D queue. Its distribution has been derived in [41]. As the
analysis in that paper, and the end result, are very complicated, we here
present a different approach that is applicable when G(-) has a phase-type
distribution or, more specifically, a mixture of Erlang distributions with the
same mean for all exponential phases. This class of distributions is known to
lie dense in the class of all probability distributions of nonnegative random
variables (cf. Section III.4 of [1]). To explain the approach, we restrict
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ourselves here even further to the case that G(-) is an Erlang distribution
with two exponential phases: G(z) = [; A*te”*dt (note that the mean item
interarrival time now is 2/)). A key quantity in the analysis is the stopping
time
7=min{t: V(t) =0 or V(t) > 1},

when starting in some state z. We use the abbreviation E, = E(- | V(0) =
z). The conditional joint LST E, (e=®V(M=#7|V/ () > 1) of the overflow and
the time of the overflow given that an overflow occurred is not easy to obtain
for general G(-) due to the dependence between V(7) and 7. However,
when the item interarrival times are Erlang distributed, V() and 7 are
conditionally independent given the number of exponential phases of the
overflow above level 1. We now first show how it can be obtained in the
Erlang(2, \) case. Defining the events I ={level 1 is upcrossed by the second
phase of the jump} and IT ={level 1 is upcrossed by the first phase of the
jump}, we have for Q = I, I1:

E, <e—aV<T>—5TyV(T) >, Q) _E, <e—aV<T>\V(T) > 1, Q) E, (e—ﬁTyV(T) >, Q) ,
(35)
and

(™Y oy )

E. (e
= E; (efav(f)fﬁTl{V(r)x,I}) +E; (efaV(T)fﬁTl{V(r)x,U})

- Rl e () Blen) o

Then, for 0 < x <1 we get

E,e V=0 = ¢o(B;2) + e 25 01(8; ) + e (A%ay o11(B; ),
where ¢o(5; ), ¢1(8; ) and ¢r7(5;x) are the partial LSTs of 7 such that
60(B;2) 1= Eq ™V Oy (1) _gp = B e Ly ()0},
b1(B; ) :=Epe P71y, (37)
G11(B;x) :=Ege Py

Note that ¢o(0;z), ¢1(0;x) and ¢r7(0; ) are the probabilities of the event
{V (1) = 0}, the event I and the event II, respectively. To find ¢o(5;x),
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¢1(B;x) and ¢rr(5;x) consider the following process M (s) which is a Kella~
Whitt martingale (cf. [22]):

A S v
— - - - —aV(t)—pt —azx__—aV(s)—Bs
M(s) : [a 1 (1 (A n a> ) ﬁ] /0 e dt+e e .

Now use the optional sampling theorem with stopping time 7 to obtain
EM(7) =0, i.e., the following fundamental identity:

e ()

A . o XY '
)\+a¢1(5,:1:)+e <>\+a> or1(B; ). (38)

E, /T e—ocV(t)—ﬁtdt — g @
0

+ ¢o(Bsx) +e

The term between square brackets in the lefthand side has three zeroes
(which actually are real), while the E, term must be finite for finite a; hence
we get three linear equations for the three unknowns ¢ (8;x), ¢7(8; ) and

¢r1(B; ).

Remark 8 Briefly consider the case that G(-) is a mixture of Erlang distri-
butions with the same mean for all exponential phases. Its LST is given by
bla) =>4 pk(/v%a)k, with all py, > 0 and summing to one. We then have
to distinguish between n instead of two events, corresponding to the number
of phases of overshoots above 1. The Kella-Whitt martingale now yields a
generalization of (38) with n + 1 unknown functions of z in the righthand
side, while the term between square brackets in the lefthand side is replaced
by a— pu(1 —b(a)) — 5. This is a familiar term in the study of the transient
behavior of the M/G/1 queue, cf. p. 259 and p. 548 of [13]. The term has
n + 1 zeroes in our case; Rouché’s theorem can be used to prove that one of
them lies in the righthalf plane, but the zeroes are not necessarily real. It is
also not a priori clear how to prove that the resulting n + 1 linear equations
for the n + 1 unknowns are independent.

We are now ready to obtain the LST of T', the time between two successive
outdatings. We have

1 2
Ee AT = / Mre M E, e Tdy + By e AT )\e*)‘i)\ +e ( A )
0 A+
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To solve for Ee AT we first have to find E, e #Tfor 0 < < 1. Observe
that the factor Ae = is the probability that the first phase of the item arrival
interval does not exceed 1, but the sum of the two phases does exceed 1,
and that the factor e is the probability that the first phase of the item
arrival interval exceeds 1. We have

E,e T = ¢o(B;2) + ¢1(B; 2)

A A\

E; e ?T + ;T () E e_BT,
i or1(B; ) N+ 3 1
and by substituting * = 1 we obtain the LST of the time between two
successive outdatings:

$o(B;1)
5.
1—o1(8: 1) 535 — orr(6;1) <X%ﬁ)

The time between two successive unsatisfied demands. Consider an
upcrossing of level 1 of the VOT process V. Because of the Erlang(2, \)
item arrival intervals, such an upcrossing is either with one or with two
exp(A) phases. If the next demand occurs before an arrival of an item
on the shelf, it is unsatisfied. The unsatisfied demand process is not a
renewal process. However, we can find the LST of the time U between
two successive unsatisfied demands by distinguishing whether an upcrossing
of level 1 occurs with one or two exp()\) phases. Let W(#)(3) denote the
LST of the time from such an upcrossing until the next unsatisfied demand,
if that upcrossing is with i phases, i = 1,2. We have, with E; e %Y the
conditional LST of the remaining length of U, from the moment that level
1 is downcrossed:

El G_BT =

A
g,(l) — K + E *,BU’
(5) p+A+8  p+A+p Le

and )
gy =

(8) pw+A+8  p+A+p
To compute Ei e AV and more generally E, e 3V the LST of the time un-
til the next unsatisfied demand when starting from level x, we distinguish
between the three possibilities that stopping time 7 first occurs via an up-
crossing of level 1 with one phase, or with two phases, or that it occurs by
reaching level zero:

v(pB).

1
+¢o(B;x) [ / Nye W E, e Vdy + xe 0D (8) + e A0 ()
0
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To solve for E, e PV multiply both sides of (40) by A2ze**, integrate and
introduce

1
Q) = / Mo ME, e PUdz.
0

Then we get

1
Q) = () / Nae Mg, (8 a)da

’ 1
+\11(2>(5)/ Aze M (6; x)d
0
1
+[Q(8) + AT (B) + e W) (3)] / Aze Mo (B; z)da,
0
so that
) = M (B) fol Nze (B z)dx + TP (B) fol Nxe M prr(B; x)da
B 1-— fol A2xe= o (B; x)dx
. Me 2T (8) + e MW@(B)] [ N2we ¢y (5 2)da

1-— fol A2xe= o (B; x)dx

Now observe that this expression for () still contains (hidden in () (5))
the unknown E; e #Y. By taking z = 1 in (40) we obtain a second lin-
ear equation between Q(f) and E;e Y and thus both functions can be
determined.

Remark 9 We emphasize that the time periods between unsatisfied de-
mands are neither independent nor identically distributed, but they are con-
ditionally independent given the number of phases of the overshoot above
level 1. It is also of relevance to determine the probability ¢ that an over-
shoot above level 1 is one phase. ¢ can be determined by observing that
1/f(1) is the mean time between successive unsatisfied demands, and that
hence the fraction of time above level 1 can be written as

1= P = 7y |+ 2009 25
Henee D -2f)], 11
T Gy

Incidentally, that factor (2 — ¢)/A is not only the expected overshoot above
level 1, but of course it is also the expected length of the emptiness period.

41



The emptiness period: The general case. Earlier we already empha-
sized the analogy between the M/G/1 + D queue and the PIS model with
Poisson demand arrival process and with a renewal arrival process of items.
In particular, the workload process of the latter queue, with the idle periods
deleted, agrees with the VOT process of the PIS. However, different quanti-
ties are of interest in the queue and PIS setting. For example, the amount
of overflow above level 1 is not of that much relevance in the M/G/1 + D
queue, but it represents the important emptiness period of the shelf in the
PIS. We study it below. For this, we need the steady-state density f(-) of
the VOT V. In Section 5 we have discussed how f(-) can be obtained by
solving (25) via Picard iteration. Using this knowledge about f(-) we obtain
the distribution B(-) of the overshoot above level 1. The following lemma
has been introduced in [8], with a different motivation, and for the case of
constant p(-).

Lemma 2
flx+1)

Ble)=1="my

x>0,
where f(-) is the solution of (25).

Proof. On the one hand, b.(z) := ﬁ?ﬁ)) for x > 0 is the conditional
steady-state density of V given that the shelf is empty. On the other hand,
by deleting the time periods in which V < 1 and gluing together the time
periods in which V > 1 we see that above level 1 the behavior of the VOT V
is stochastically equal to that of the equilibrium forward recurrence time as-

sociated with B(-), so that b.(z) = m%%. From the argument above,
0

- 1-F(1) . flz+1) . 1-B(z)
Jo L= By)ldy = =53y~ Thus, by equating {Zpr) with je=peyg;, the

lemma follows. m

We end this section by briefly mentioning Cohen’s approach ([12], Chap-
ter III) to the workload distribution in the M/G/1 + D queue, with buffer
size D = 1. Note that this immediately translates into results for the M/G
PIS model. Cohen derives {(x) :=P,(V (1) =0) = 1-P,(V(7) > 1), for the
case of general G(-), as well as the steady-state workload distribution. Note
that £(z) is the probability that the shelf becomes empty before an outdating
when the starting state is x. This probability is of importance from an oper-
ational research point of view, since outdating (perishability) and emptying
the shelf involve costs of an opposite type that should be optimally balanced.
Cohen introduces G(z) := p Jo (1—G(y))dy, with p := AEG, and a param-
eter § which is zero if p < 1 and which otherwise is the unique positive zero
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of [7°e™®dG(y) — 1. He then proves that, with G(z) := [ e"%¥dG(y) and
with

V(z) = /OI eVdY G™(y), x>0, (41)
- n=0

one has the following expression for the steady-state distribution of the
workload V(1) in the finite dam M/G/1 + D with buffer of size D = 1:

PV < z) = ‘f(w), 0<z<l. (42)
V(1)
See also (28) for another representation, up to a multiplicative constant.
For p < 1 the steady-state workload distribution of the ordinary M/G/1
queue exists, and f/(m) is proportional to that distribution, with propor-
tionality factor 1/(1 — p); and it is a well-known result that the steady-state
distribution of the finite dam (M/G/1+ D) for p < 1 is proportional to the
steady-state workload distribution in the infinite dam (M/G/1); see, e.g.,
Hooghiemstra [18] for an elegant sample-path proof.
Cohen [12] subsequently obtains the following expression for the proba-
bility () that the workload process hits level 0 before hitting level 1, when
starting from level x:

= 0<z<l (43)

Such exit probability results have later been obtained in much greater gen-
erality for Lévy processes, typically expressing these exit probabilities in
terms of so-called scale functions (cf. Section 8.2 of [23]).

7 Conclusion and suggestions for further research

In this paper we have surveyed, extended and enriched the probabilistic
analysis of a large class of perishable inventory systems. We have emphasized
that a unifying principle is to consider the so-called virtual outdating process
V, where V(t) equals one minus the age of the oldest item on the shelf at
time ¢t. The steady-state density of V was shown to be the main vehcle
to obtain key performance measures like the rate of outdatings, the rate
of unsatisfied demands and the distribution of the number of items on the
shelf.

Through the years, we have devoted a significant part of our research
efforts towards the probabilistic analysis of perishable inventory systems,
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and we hope to inspire others to also study them at length. There are many
interesting methods and fascinating open problems in this area. Moreover,
perishable inventory systems have huge societal relevance, and there is an
abundance of practically relevant variants of the basic PIS that we have
described in Section 2. Some such variants and generalizations have been
described and analyzed in the present paper, but neither did we have the
space to discuss them exhaustively, nor were we able to treat all the major
variants. Below we mention a few more interesting PIS problems.

e FIFO wersus LIFO. In the PIS literature, it is commonly assumed
that items are issued First-In-First-Out (FIFO). One exception is [30],
where the Last-In-First-Out (LIFO) issuance policy is studied for the
basic PIS. Under LIFO, the shelf sojourn time of an item is shown to
be distributed as the minimum of 1 and the busy period of an M /M /1
queue with arrival rate A and service rate p. This result is used to
derive several other performance measures. Subsequently FIFO and
LIFO are compared according to some cost criterion. Interestingly,
while FIFO performs better in most cases, LIFO is better when the
holding costs of items are high. It would be interesting to study other
issuance policies like a random selection policy.

e Disasters. In [39], the basic PIS is studied with the following additional
feature: at Poisson epochs, all items become obsolete (e.g., because of
a power failure). The steady-state density of the VOT is derived using
LCT and solving a second-order homogeneous differential equation. In
an extended version of this paper, we intend to treat this model for
the case of renewal arrivals of items.

In [39] the system is also studied in heavy traffic. Under those con-
ditions, the system is only instantaneously empty. Between disasters,
the VOT evolves like reflected Brownian motion on [0,1]. At disas-
ters, it restarts at 1. Using the theory of reflected Brownian motion
(cf. Chapter 5 of [17]), several cost functionals are determined.

e Heavy traffic. Another heavy-traffic study of a PIS is performed in
[32]. Tt proposes a diffusion approximation for a basic PIS with the
additional feature of hysteresis (cf. also Subsection 4.1). A reflected
Brownian motion between barriers 0 and 1 is obtained, with the spe-
cial feature that the drift becomes ~;, when the process downcrosses a
level a, and becomes vy the first time that the process subsequently
upcrosses some level b > a. The stationary law of the process is anal-
ysed by using a martingale, and the total expected discounted costs

44



are evaluated. This heavy-traffic approach seems to have potential for
a wider class of PIS, and could be explored further.

Two systems with one-way substitution. Liu et al. [24] study two PIS
that are correlated through a so-called one-way substitution of de-
mands. If the shelf of PIS II is empty when it receives a type-II
demand, then that demand is redirected to PIS I. However, if the shelf
of PIS I is empty when it receives a type-1 demand, then that demand
cannot be redirected. This problem is inspired by blood banks, in
which persons of a particular blood type can or cannot use blood of
another type. The mathematical analysis of PIS II is straightforward,
but that of PIS I gives rise to a modulated Poisson demand process
in a non-Markovian environment, for which Liu et al. develop an ap-
proximation method. The study of correlated systems of PIS still is
almost unexplored territory.

By-products. In, e.g., blood banks there are two types of products:
the main product - the blood portions and the by-product - plasma;
another example is fresh oranges with orange juice as by-product.
Both products are subject to perishability, but with different expi-
ration dates. While the maximal shelf life of the main product is 1,
the maximal shelf life of the by-product is b and the by-product starts
its shelf life at the moment that the main product is perished. The
dependence between main product and by-product makes the analysis
complicated [37].

Lead times. In many real-life inventory systems, there is an item or-
dering policy, under which one or more items are ordered when the
number of items in stock decreases to a certain level; and typically
there is a lead time involved in such a replenishment order. We refer
to Berk and Giirler [7] for the study of a PIS with the so-called (Q, )
replenishment policy with lead times.

Finally, we would like to point out that the transient behavior of PIS has
hardly received attention so far. Also, it would be useful to have sharp ap-
proximations and bounds for key performance measures in cases for which
it is too hard to obtain explicit expressions for the steady-state density of
the VOT.
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