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Abstract

Consider a Lévy process𝑌 (𝑡) over an exponentially distributed time𝑇𝛽 with mean 1/𝛽.
We study the joint distribution of the running maximum 𝑌 (𝑇𝛽) and the time epoch
𝐺 (𝑇𝛽) at which this maximum last occurs. Our main result is a fluctuation-theoretic
distributional equality: the vector (𝑌 (𝑇𝛽), 𝐺 (𝑇𝛽)) can be written as a sum of two
independent vectors, the first one being (𝑌 (𝑇𝛽+𝜔), 𝐺 (𝑇𝛽+𝜔)) and the second one being
the running maximum and corresponding time epoch under the restriction that the Lévy
process is only observed at Poisson(𝜔) inspection epochs (until 𝑇𝛽). We first provide
an analytic proof for this remarkable decomposition, and then a more elementary proof
that gives insight into the occurrence of the decomposition and into the fact that 𝜔 only
appears in the right hand side of the decomposition. The proof technique underlying the
more elementary derivation also leads to further generalizations of the decomposition,
and to some fundamental insights into a generalization of the well known Lindley
recursion.
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1 Introduction
Consider a general real-valued Lévy process 𝑌 ≡ {𝑌 (𝑡), 𝑡 ≥ 0}, inspected at independent
Poisson(𝜔) epochs 𝐼1, 𝐼2, . . . In [5] a relation is established between (i) the distribution of
the running maximum 𝑌 (𝑇𝛽) of 𝑌 under continuous observation until an, independently
sampled, exp(𝛽) distributed ‘killing time’ 𝑇𝛽 and (ii) the running maximum 𝑌𝛽,𝜔 of 𝑌 until
𝑇𝛽 when restricting oneself to those Poisson(𝜔) inspection epochs. This also covers the
infinite horizon case by taking 𝛽 ↓ 0, when imposing the additional assumption that 𝑌 has
a negative drift. The main result in [5] is the following fluctuation-theoretic decomposition
(with, throughout the entire paper, the symbol ‘∼’ denoting equality in distribution).

Theorem 1 The following distributional equality holds:

𝑌 (𝑇𝛽) ∼ 𝑌 (𝑇𝛽+𝜔) + 𝑌𝛽,𝜔, (1)

with the two random variables in the right hand side being independent.

The practical motivation to study such relations between processes under continuous ob-
servation and under Poisson inspection is that real-life processes usually are not observed
continuously. Examples abound in, e.g., healthcare, reliability and insurance. In the latter
area, one has the distinction between the ruin probability in the classical Cramér-Lundberg
insurance risk model, and the bankruptcy probability for the same model, as introduced
in [1]: bankruptcy occurs if the insurance company has a negative capital at a Poisson
inspection epoch. More specifically, the ruin probability 𝑝(𝑢, 𝑇𝛽) before 𝑇𝛽 of an insur-
ance company with initial capital 𝑢 can be written as P(𝑌 (𝑇𝛽) > 𝑢), whereas the (smaller)
bankruptcy probability is given by P(𝑌𝛽,𝜔 > 𝑢). The latter probability was obtained in [3]
for 𝛽 = 0 and 𝑌 a compound Poisson process with exponentially distributed claim sizes;
the case of generally distributed claim sizes was treated in [4]. In reliability theory, similar
quantities are highly relevant; think of the probability that the condition of a device (car,
mri scanner) exceeds a particular critical value at which, e.g., repair is needed.
In [5], Theorem 1 was proven relying on Wiener-Hopf factorizations for Lévy processes
and various manipulations of integrals. Theorem 1 indeed has the flavor of a Wiener-Hopf
decomposition, but is actually of a quite different nature. A famous result regarding the
Wiener-Hopf decomposition of a Lévy process𝑌 (see, e.g., [15, Thm. 45.7, p. 341], [6, Thm.
5, p. 159], [11, Thm. 6.16, p. 158]) states that the random variables𝑌 (𝑇𝛽) and𝑌 (𝑇𝛽)−𝑌 (𝑇𝛽),
which evidently sum to 𝑌 (𝑇𝛽), are independent. An intrinsic difference with the setting of
Theorem 1, is that there the two independent components in the sum in the right hand side
add up to the left hand side only ‘in a distributional sense’.
The proof of Theorem 1 in [5] neither provides any intuition on the remarkably simple
decomposition (1). In addition, it did not offer any explanation for the intriguing fact
that 𝜔 only appears in its right hand side; while clearly 𝑌 (𝑇𝛽+𝜔) decreases in 𝜔 and 𝑌𝛽,𝜔
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increases in 𝜔, they apparently do so in a way that these effects cancel. These observations
have motivated us to seek a deeper insight into the decomposition in Theorem 1; further
theoretical motivation was provided to us by several beautiful identities that were presented
in [2], relating exit problems for Lévy processes under permanent observation and their
counterparts under Poisson inspections. Theorem 1 raised the following concrete questions
with us, which we aim to answer in the present paper.

1. Can Theorem 1 be extended to the two-dimensional case, with as second component
the time epochs at which the respective running maxima occur?

2. Is there a (relatively) elementary way to understand and prove Theorem 1?

3. Are there any generalizations of Theorem 1 in the one-dimensional case?

4. Can it be explained that 𝜔 only appears in the right hand side of (1)?

The main results of the present paper are the affirmative answers to these four questions,
including an explicit probabilistic decomposition of the vector (𝑌 (𝑇𝛽), 𝐺 (𝑇𝛽)), with 𝐺 (𝑇𝛽)
the time epoch of the last occurrence of the running maximum, into two independent
vectors (and a direct way to derive it). The first of these vectors is (𝑌 (𝑇𝛽+𝜔), 𝐺 (𝑇𝛽+𝜔)) and
the second one is the running maximum and corresponding time epoch under the restriction
that the Lévy process is only observed at Poisson(𝜔) inspection epochs, until 𝑇𝛽. More
specifically: Let 𝐻𝑚 denote the increment of 𝑌 between two consecutive inspection epochs
𝐼𝑚−1 and 𝐼𝑚 (with 𝐼0 := 0). Define 𝑆0 := 0 and, for 𝑛 ∈ N,

𝑆𝑛 :=
𝑛∑︁

𝑚=1
𝐻𝑚,

and the corresponding running maximum process 𝑆𝑛 := max{𝑆0, 𝑆1, . . . , 𝑆𝑛}. Obviously,
the number 𝑁𝛽,𝜔 of Poisson inspection epochs until the exponentially distributed 𝑇𝛽 is
geometrically distributed, with success probability 𝑞 := 𝛽/(𝛽 + 𝜔),

P(𝑁𝛽,𝜔 = 𝑛) = (1 − 𝑞)𝑛 𝑞, 𝑛 = 0, 1, . . . . (2)

Notice that 𝑌𝛽,𝜔 = 𝑆𝑁𝛽,𝜔
. With 𝐺𝑁𝛽,𝜔

the last time epoch (of an inspection) before 𝑇𝛽 that
this maximum occurs, we shall prove the following two-dimensional decomposition that
generalizes Theorem 1:

(𝑌 (𝑇𝛽), 𝐺 (𝑇𝛽)) ∼ (𝑌 (𝑇𝛽+𝜔), 𝐺 (𝑇𝛽+𝜔)) + (𝑆𝑁𝛽,𝜔
, 𝐺𝑁𝛽,𝜔

), (3)

with the two pairs in the right hand side being independent. In addition, our study of the
above decompositions leads us to several variants and a generalization of the well known
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Lindley recursion, and subsequently to a series of results for such recursions (including
the uniqueness of their solution). Since, in the literature on fluctuation theory for Lévy
processes, distributional properties of the pair (𝑌 (𝑇𝛽), 𝐺 (𝑇𝛽)) have been analyzed in great
detail, we can use (3) to obtain their counterparts for (𝑆𝑁𝛽,𝜔

, 𝐺𝑁𝛽,𝜔
). For instance, we can

use the argumentation of [5, Remark 3.4] to find the covariance of 𝑆𝑁𝛽,𝜔
and 𝐺𝑁𝛽,𝜔

in case
the driving Lévy process is spectrally one-sided.
The remainder of the paper is organized as follows. In Section 2 we state and prove the
two-dimensional decomposition in (3). The proof technique uses the same – rather heavy
– machinery as was used in [5] to prove the above Theorem 1. In Section 3 we consider an
elementary Lindley-type recursion that eventually, with the right choice of its components,
yields a very simple proof of Theorem 1. Section 4 discusses the question whether a
particular generalized Lindley-type equation has a unique solution. In Section 5 we outline
how (3) can be obtained using a fairly straightforward two-dimensional extension of the
Lindley recursion of Section 3. Section 6 presents various explicit results for spectrally
positive and spectrally negative Lévy processes (covering both transforms and moments),
and Section 7 contains concluding remarks and possible future research directions.
Some notation will be used throughout the paper. In what follows, a.s., iff, 𝑥 ∨ 𝑦 and 𝑥+
abbreviate almost surely, if and only if, max(𝑥, 𝑦) and max(𝑥, 0), respectively. We use the
symbol N to denote {0, 1, 2, . . .}. Also, 1{𝐴} is the indicator function of the event 𝐴.

2 Decomposition: the two-dimensional case
In this section we present a first proof of (3), which is Theorem 2 below. This theorem
is a two-dimensional decomposition that generalizes Theorem 1 by including, as second
component, the last time epochs at which the various maxima occur. We thus answer the
first question listed in Section 1.
Before stating and proving the theorem, we first mention a few key results regarding the
maximum of a Lévy process over an exponentially distributed interval, mainly taken from
[11, Thm. 6.16]. 𝑇𝜁 once more denotes an exp(𝜁) distributed random variable (sampled
independently from the Lévy process under study), and 𝐺 (𝑇𝜁 ) denotes the epoch at which
the maximum 𝑌 (𝑇𝜁 ) is last attained. Relying on Wiener-Hopf theory, it was proven that the
Laplace-Stieltjes transform of the joint distribution of 𝑌 (𝑇𝜁 ) and 𝐺 (𝑇𝜁 ) is given by

E e−𝛼𝑌 (𝑇𝜁 )−𝛾𝐺 (𝑇𝜁 ) =
𝜅(𝜁, 0)

𝜅(𝛾 + 𝜁, 𝛼) , (4)

where
𝜅(𝑎, 𝑏) := 𝑘 exp

[∫ ∞

0

∫
(0,∞)

1
𝑡
(e−𝑡 − e−𝑎𝑡−𝑏𝑥) P(𝑌 (𝑡) ∈ d𝑥) d𝑡

]
, (5)
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with 𝑘 some strictly positive constant. As a consequence,

E e−𝛼𝑌 (𝑇𝜁 )−𝛾𝐺 (𝑇𝜁 ) = exp
[
−
∫ ∞

0

∫
(0,∞)

1
𝑡

e−𝛽𝑡 (1 − e−𝛾𝑡−𝛼𝑥) P(𝑌 (𝑡) ∈ d𝑥) d𝑡
]
. (6)

It is readily verified that this in particular implies that

E e−𝛼𝑌 (𝑇𝛽)−𝛾𝐺 (𝑇𝛽) = E e−𝛼𝑌 (𝑇𝛽+𝜔)−𝛾𝐺 (𝑇𝛽+𝜔) 𝜆(𝛼, 𝛽, 𝛾, 𝜔),

where

𝜆(𝛼, 𝛽, 𝛾, 𝜔) := exp
[
−
∫ ∞

0

∫
(0,∞)

1
𝑡

e−𝛽𝑡 (1 − e−𝜔𝑡) (1 − e−𝛾𝑡−𝛼𝑥) P(𝑌 (𝑡) ∈ d𝑥) d𝑡
]
. (7)

We are now ready to formulate and prove the two-dimensional decomposition.

Theorem 2 The following distributional equality holds:

(𝑌 (𝑇𝛽), 𝐺 (𝑇𝛽)) ∼ (𝑌 (𝑇𝛽+𝜔), 𝐺 (𝑇𝛽+𝜔)) + (𝑆𝑁𝛽,𝜔
, 𝐺𝑁𝛽,𝜔

),

with the two pairs in the right hand side being independent.

Proof. Based on the above, it suffices to show that the Laplace-Stieltjes transform of the
joint distribution of (𝑆𝑁𝛽,𝜔

, 𝐺𝑁𝛽,𝜔
) is given by the expression for 𝜆(𝛼, 𝛽, 𝛾, 𝜔) in (7). Let

𝐸𝑛 (𝛽+𝜔) denote an Erlang distributed random variable with 𝑛 phases that are exponentially
distributed with rate 𝛽 + 𝜔. Then, with 𝑈𝑁𝛽,𝜔

the time of the 𝑁𝛽,𝜔-th inspection epoch,
recalling that 𝑞 = 𝛽/(𝛽 + 𝜔),

E e−𝛼𝑆𝑁𝛽,𝜔
−𝛾𝑈𝑁𝛽,𝜔 =

∞∑︁
𝑛=0

(1 − 𝑞)𝑛 𝑞 E e−𝛼𝑌 (𝐸𝑛 (𝛽+𝜔))−𝛾𝐸𝑛 (𝛽+𝜔) .

With 𝜑(𝛼) the Laplace exponent of the Lévy process 𝑌 , so that E e𝛼𝑌 (𝑡) = e−𝜑(𝛼)𝑡 , we thus
find

E e−𝛼𝑌 (𝐸𝑛 (𝛽+𝜔))−𝛾𝐸𝑛 (𝛽+𝜔) =

(
𝛽 + 𝜔

𝛽 + 𝜔 − 𝜑(𝛼) + 𝛾

)𝑛
,

and hence
E e−𝛼𝑆𝑁𝛽,𝜔

−𝛾𝑈𝑁𝛽,𝜔 =
𝛽

𝛽 + 𝜔
𝛽 + 𝜔 − 𝜑(𝛼) + 𝛾
𝛽 − 𝜑(𝛼) + 𝛾 . (8)

The idea is now to find an alternative expression for the two factors in the right hand side in
(8). To this end, we use the Frullani integral:

𝛽

𝛽 + 𝜔 = exp
[
−
∫ ∞

0

1
𝑡

e−𝛽𝑡 (1 − e−𝜔𝑡) d𝑡
]
,
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which is easily seen to be true by replacing e−𝛽𝑡 (1−e−𝜔𝑡)/𝑡 by
∫ 𝛽+𝜔
𝛽

e−𝑦𝑡d𝑦. It thus trivially
follows that also

𝛽

𝛽 + 𝜔 = exp
[
−
∫ ∞

0

∫
R

1
𝑡

e−𝛽𝑡 (1 − e−𝜔𝑡) P(𝑌 (𝑡) ∈ d𝑥) d𝑡
]
.

Then we apply the same techniques to (𝛽 − 𝜑(𝛼) + 𝛾)/(𝛽 + 𝜔 − 𝜑(𝛼) + 𝛾), i.e., the second
factor in the right hand side of (8). This leads to

E e−𝛼𝑆𝑁𝛽,𝜔
−𝛾𝑈𝑁𝛽,𝜔 (9)

= exp
[
−
∫ ∞

0

∫
R

1
𝑡

e−𝛽𝑡 (1 − e−𝜔𝑡) (1 − e−𝛾𝑡−𝛼𝑥) P(𝑌 (𝑡) ∈ d𝑥) d𝑡
]
.

The argumentation now follows that of the proof of [12, Thm. 1], dealing with the Wiener-
Hopf decomposition for random walks. More precisely, with the same line of reasoning as
in the proof of part (i) of [12, Thm. 1], it is obtained that (𝑆𝑁𝛽,𝜔

, 𝐺𝑁𝛽,𝜔
), being a geometric

sum of i.i.d. random variables, is infinitely divisible, and in addition it follows that the
random pairs (being in addition infinitely divisible)

(𝑆𝑁𝛽,𝜔
, 𝐺𝑁𝛽,𝜔

) and (𝑆𝑁𝛽,𝜔
− 𝑆𝑁𝛽,𝜔

,𝑈𝑁𝛽,𝜔
− 𝐺𝑁𝛽,𝜔

) (10)

are independent. Then, as in the proof of part (ii) of [12, Thm. 1], observing that 𝑆𝑁𝛽,𝜔
is

nonnegative and 𝑆𝑁𝛽,𝜔
− 𝑆𝑁𝛽,𝜔

is nonpositive, we conclude that

E e−𝛼𝑆𝑁𝛽,𝜔
−𝛾𝐺𝑁𝛽,𝜔 (11)

= exp
[
−
∫ ∞

0

∫
(0,∞)

1
𝑡

e−𝛽𝑡 (1 − e−𝜔𝑡) (1 − e−𝛾𝑡−𝛼𝑥) P(𝑌 (𝑡) ∈ d𝑥) d𝑡
]

;

see also Remark 2 below regarding the second vector in (10). This confirms that the Laplace-
Stieltjes transform of the joint distribution of (𝑆𝑁𝛽,𝜔

, 𝐺𝑁𝛽,𝜔
) is given by the expression for

𝜆(𝛼, 𝛽, 𝛾, 𝜔) in (7). □

Remark 1 Combining Equation (4) with the decomposition in Theorem 2, we conclude
that the following expression holds for the joint transform of the running maximum (until
𝑇𝛽) at inspection epochs, and the last epoch at which that running maximum occurred:

Ee−𝛼𝑆𝑁𝛽,𝜔
−𝛾𝐺𝑁𝛽,𝜔 =

𝜅(𝛽, 0)
𝜅(𝛽 + 𝛾, 𝛼)

𝜅(𝛽 + 𝜔 + 𝛾, 𝛼)
𝜅(𝛽 + 𝜔, 0) , (12)

with 𝜅(·, ·) as defined in (5).
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Remark 2 It is noted that this Wiener-Hopf based argumentation, that led to (11) from (9),
also yields

E e−𝛼(𝑆𝑁𝛽,𝜔
−𝑆𝑁𝛽,𝜔

)−𝛾(𝑈𝑁𝛽,𝜔
−𝐺𝑁𝛽,𝜔

)

= exp
[
−
∫ ∞

0

∫
(−∞,0)

1
𝑡

e−𝛽𝑡 (1 − e−𝜔𝑡) (1 − e−𝛾𝑡−𝛼𝑥) P(𝑌 (𝑡) ∈ d𝑥) d𝑡
]
, (13)

with, as mentioned, the two pairs in (10) being independent. In addition, 𝑆𝑁𝛽,𝜔
− 𝑆𝑁𝛽,𝜔

is
distributed as the corresponding running minimum. The transform appearing in (13) can be
expressed in terms of the function 𝜅(·, ·), as defined in [11, Theorem 6.16]; cf. (12). ^

Remark 3 A related two-dimensional decomposition, restricted to the infinite-horizon case
(corresponding to 𝛽 = 0), is given in [2, Prop. 2]. A careful reading of the proof of that
proposition reveals that one could possibly also apply the elegant ideas there to the finite
horizon case. ^

In Section 5 we provide an alternative proof of Theorem 2, which we feel is more direct
and intuitive. As a preparation for that, we first focus on its one-dimensional counterpart,
as stated in Theorem 1.

3 A one-dimensional recursion and its implications
In this section we aim to provide answers to Questions 2 and 3 posed in Section 1: we wish
to develop a more intuitive understanding of Theorem 1, and we wish to explore whether it
can be further generalized (while remaining in the one-dimensional setting).

Let 𝑢𝑛+1, 𝑣𝑛 ≥ 0 for 𝑛 ≥ 0, assume 𝑧0 = 0 and consider the following recursion between
some deterministic quantities:

𝑧𝑛+1 = 𝑢𝑛+1 + (𝑧𝑛 − 𝑣𝑛)+ . (14)

To interpret this recursion, it may help the reader to think of a determinstically evolving
queue in which there is service in order of arrival. Then 𝑧𝑛+1 corresponds to the sojourn
time of the (𝑛 + 1)-st customer who has service time 𝑢𝑛+1 and where the interarrival time
since the 𝑛-th customer is 𝑣𝑛.
Noting that 𝑧1 = 𝑢1, then with 𝑤𝑛 = 𝑧𝑛+1 − 𝑢𝑛+1 (think of the waiting time in the above-
mentioned queue) and 𝑥𝑛 = 𝑢𝑛 − 𝑣𝑛 we have that the above recursion can be rewritten in a
simpler form: 𝑤0 = 0 and, for every 𝑛 = 1, 2, . . . ,

𝑤𝑛 = (𝑤𝑛−1 + 𝑥𝑛)+ . (15)
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This is the well known Lindley recursion [14] of which the solution is

𝑤𝑛 = 𝑠𝑛 − min
𝑘∈{0,...,𝑛}

𝑠𝑘 = max
𝑘∈{0,...,𝑛}

(𝑠𝑛 − 𝑠𝑘 ) , (16)

where 𝑠0 = 0 and 𝑠𝑛 =
∑𝑛
𝑖=1 𝑥𝑖 for 𝑛 = 1, 2, . . . .

Recalling (14) and 𝑤𝑛 = 𝑧𝑛+1 − 𝑢𝑛+1, we therefore immediately have

𝑧𝑛+1 = 𝑢𝑛+1 + 𝑤𝑛,
𝑤𝑛 = (𝑧𝑛 − 𝑣𝑛)+ , (17)

where it should be noted that 𝑤𝑛 is a function of 𝑢1, . . . , 𝑢𝑛, 𝑣1, . . . , 𝑣𝑛, whereas 𝑧𝑛+1 is a
function of 𝑢1, . . . , 𝑢𝑛+1, 𝑣1, . . . , 𝑣𝑛.
Turning to random variables, this seemingly elementary observation leads to some interest-
ing conclusions.

Proposition 1 (Basic decomposition) Assume that 𝑍0 = 0 a.s. and that for each 𝑛 ∈
{0, 1, . . . , 𝐾} (where 𝐾 ∈ N is finite or infinite),

𝑍𝑛+1 ∼ 𝑈𝑛+1 + (𝑍𝑛 −𝑉𝑛)+, (18)

where𝑈𝑛+1, 𝑉𝑛, 𝑍𝑛 are assumed independent. Then for each 𝑛 ∈ {0, 1, . . . , 𝐾} we have that

𝑍𝑛+1 ∼ 𝑈𝑛+1 +𝑊𝑛,

𝑊𝑛 ∼ (𝑍𝑛 −𝑉𝑛)+ , (19)

where𝑊𝑛 ∼ 𝑆𝑛−min𝑘∈{0,...,𝑛} 𝑆𝑘 , (𝑆𝑘 )𝑘∈N is a random walk with independent (not necessar-
ily identically distributed) increments distributed like 𝑈𝑖 − 𝑉𝑖 with 𝑈𝑖, 𝑉𝑖 independent, and
where the pairs of random variables on the right of both equations in (19) are independent.

Proof. Take a sequence of independent random variables 𝑈′
1,𝑈

′
2, . . ., 𝑉

′
0, 𝑉

′
1, . . . such that

𝑈′
𝑛+1 ∼ 𝑈𝑛+1 and 𝑉 ′

𝑛 ∼ 𝑉𝑛 for each 𝑛 ∈ N. Set 𝑍′0 = 0 and

𝑍′𝑛+1 = 𝑈′
𝑛+1 + (𝑍′𝑛 −𝑉 ′

𝑛)+. (20)

It follows by induction that 𝑍𝑛 ∼ 𝑍′𝑛 for each 𝑛 ∈ N, and thus necessarily (19) holds,
where (for 𝑛 ∈ N) 𝑊𝑛 ∼ 𝑆𝑛 − min𝑘∈{0,...,𝑛} 𝑆𝑘 , with 𝑆0 = 0, 𝑆𝑘 =

∑𝑘
𝑖=1(𝑈′

𝑖
− 𝑉 ′

𝑖
) and 𝑊𝑛 is

independent of 𝑈𝑛+1. Observe that the independence of 𝑍𝑛, 𝑉𝑛 does not have to be proven
as it was assumed. □

Remark 4 A special case of Proposition 1 is

𝑍𝑛+1 ∼ 𝑈 + (𝑍𝑛 −𝑉)+, (21)
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where 𝑈,𝑉, 𝑍𝑛 are assumed independent. This means that in this case the increments of
the random walk 𝑆𝑛 in the proof of the basic decomposition of Proposition 1 are i.i.d. As
a consequence, 𝑊𝑛 ∼ max𝑘∈{0,...,𝑛} 𝑆𝑘 , which is a monotone sequence that converges in
distribution to𝑊∞ ∼ sup𝑘∈N 𝑆𝑘 as 𝑛→ ∞. Therefore 𝑍𝑛 also converges in distribution and
we have that

𝑍∞ ∼ 𝑈 +𝑊∞,

𝑊∞ ∼ (𝑍∞ −𝑉)+. (22)

We note that𝑊∞ and 𝑍∞ are either both a.s. finite or both a.s. infinite. As is well known, they
are a.s. finite iff 𝑆𝑛 → −∞ a.s. This, e.g., follows from [8, Thm. 8.2.5, p. 264]. A sufficient
condition is that E𝑈 < E𝑉 , which also includes the case that E𝑈 < ∞ and E𝑉 = ∞. ^

Remark 5 For the case of Remark 4, let 𝑁 be a nonnegative integer-valued random variable
(not necessarily a.s. finite). Denote 𝑝𝑖 := P(𝑁 = 𝑖) for 𝑖 ∈ {0, 1, . . . ,∞}. Let 𝑊𝑁 denote a
random variable having the distribution

P(𝑊𝑁 ∈ ·) =
∑︁

0≤𝑖≤∞
𝑝𝑖 P(𝑊𝑖 ∈ ·), (23)

and similarly for 𝑍𝑁 and 𝑍𝑁+1. Then we clearly have that

𝑍𝑁+1 ∼ 𝑈 +𝑊𝑁 ,

𝑊𝑁 ∼ (𝑍𝑁 −𝑉)+, (24)

where 𝑊𝑁 ∼ max𝑘∈{0,...,𝑁} 𝑆𝑘 and where the pairs of random variables appearing on the
right of each of the two equations are assumed independent.
We emphasize that if we would not have assumed that 𝑈𝑛+1 ∼ 𝑈 and 𝑉𝑛 ∼ 𝑉 for 𝑛 ∈ N,
it would no longer be necessarily true that 𝑈𝑁+1,𝑊𝑁 are independent nor that 𝑉𝑁 , 𝑍𝑁 are
independent, where𝑈𝑁+1 and 𝑉𝑁 are defined in the obvious way. ^

So far we have derived the very straightforward sets of recursions (19) (for finite 𝑛), (22)
(in steady state) and (24) (for random index 𝑁). We shall now exploit these recursions via
suitable choices of the input variables𝑈𝑛+1, 𝑉𝑛, to obtain an elementary proof of Theorem 1
as well as generalizations of that theorem. In particular, we first relate 𝑈𝑛+1, 𝑉𝑛 to values
of a Lévy process at Poisson inspection epochs. The next three corollaries successively use
the recursions (19) from Proposition 1, (22) from Remark 4 and (24) from Remark 5.

Corollary 1 Assume that 𝑌 ≡ {𝑌 (𝑡), 𝑡 ≥ 0} is a Lévy process and that 𝜏1, 𝜏2, . . . are
independent exponentially distributed random variables (not necessarily identically dis-
tributed) which are independent of 𝑌 . Finally, denote 𝑌 (𝑡) := sup𝑠∈[0,𝑡] 𝑌 (𝑠), Σ0 := 0 and
Σ𝑛 :=

∑𝑛
𝑖=1 𝜏𝑖 for 𝑛 ∈ N. Then, for every 𝑛 ∈ N,

𝑌 (Σ𝑛+1) ∼ 𝑈𝑛+1 +𝑊𝑛,
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𝑊𝑛 ∼ (𝑌 (Σ𝑛) −𝑉𝑛)+, (25)

where 𝑈𝑛+1 ∼ 𝑌 (𝜏𝑛+1), 𝑉𝑛 ∼ 𝑌 (𝜏𝑛+1) − 𝑌 (𝜏𝑛+1), 𝑊𝑛 = 𝑆𝑛 − min𝑘∈{0,...,𝑛} 𝑆𝑘 , 𝑆𝑛 is a random
walk with increments distributed like 𝑈𝑖 − 𝑉𝑖 and the pairs of random variables appearing
on the right of each equation in (25) are independent.

Proof. First introduce the ‘shift operator’: 𝜎𝑠𝑌 (𝑡) := 𝑌 (𝑠 + 𝑡) −𝑌 (𝑠) for 𝑠, 𝑡 ≥ 0. Then, for
any 𝑡, 𝜏 ≥ 0, we have that

𝑌 (𝜏 + 𝑡) = 𝑌 (𝜏) ∨ (𝑌 (𝜏) + 𝜎𝜏𝑌 (𝑡)) = 𝑌 (𝜏) + (𝜎𝜏𝑌 (𝑡) − (𝑌 (𝜏) − 𝑌 (𝜏)))+ . (26)

By the stationary independent increments and strong Markov property of 𝑌 we have that
the random variable 𝜎𝜏𝑌 (𝑡) and random pair (𝑌 (𝜏), 𝑌 (𝜏) − 𝑌 (𝜏)) are independent with
𝜎𝜏𝑌 (𝑡) ∼ 𝑌 (𝑡). Therefore, from (26), for each 𝑡 ≥ 0,

𝑌 (𝜏 + 𝑡) ∼ 𝑈 + (𝑌 (𝑡) −𝑉)+, (27)

with 𝑈 ∼ 𝑌 (𝜏) and 𝑉 ∼ 𝑌 (𝜏) − 𝑌 (𝜏); and 𝑌 (𝑡) is independent of (𝑈,𝑉). Now assume
in addition that 𝜏 is exponentially distributed, independent of 𝑌 . Then the aforementioned
Wiener-Hopf factorization for Lévy processes implies that𝑈 and𝑉 are independent. Finally
replace 𝜏 by 𝜏𝑛+1 and 𝑡 by Σ𝑛. Then, when 𝑍𝑛 = 𝑌 (Σ𝑛) and𝑈𝑛+1, 𝑉𝑛 are as assumed, (18) is
satisfied, so the result is a direct consequence of Proposition 1. □

We emphasize that, in Corollary 1, 𝑈𝑖 ∼ 𝑌 (𝜏𝑖) whereas 𝑉𝑖 ∼ 𝑌 (𝜏𝑖+1) − 𝑌 (𝜏𝑖+1) and thus,
unless 𝜏𝑖 and 𝜏𝑖+1 are identically distributed, it does not necessarily hold that𝑈𝑖−𝑉𝑖 ∼ 𝑌 (𝜏𝑖).
However when 𝜏1, 𝜏2, . . . are i.i.d., then we indeed have, by the independence of 𝑌 (𝜏) and
𝑌 (𝜏) − 𝑌 (𝜏), that𝑈𝑖 −𝑉𝑖 ∼ 𝑌 (𝜏) and hence 𝑆𝑘 ∼ 𝑌 (Σ𝑘 ) for every 𝑘 ∈ N.
The last paragraph, Corollary 1 and Remark 4 immediately imply the following, which may
also be concluded from (the proof of) [2, Prop. 1].

Corollary 2 If, in addition to the assumptions of Corollary 1, 𝜏1, 𝜏2, . . . are also identically
distributed like 𝜏, then

𝑌 (∞) ∼ 𝑈 +𝑊∞,

𝑊∞ ∼ (𝑌 (∞) −𝑉)+, (28)

where𝑈 ∼ 𝑌 (𝜏),𝑉 ∼ 𝑌 (𝜏) −𝑌 (𝜏),𝑌 (∞) ∼ sup𝑡≥0𝑌 (𝑡),𝑊∞ ∼ sup𝑛∈N𝑌 (Σ𝑛), and the pairs
of random variables on the right of each of the equations in (28) are independent.

Similarly, Corollary 1, Corollary 2 and Remark 5 also imply the following claim.
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Corollary 3 With the assumptions of Corollary 2, if 𝑁 is a nonnegative integer valued
random variable (not necessarily a.s. finite) which is also independent of 𝑌 , then

𝑌 (Σ𝑁+1) ∼ 𝑈 +𝑊𝑁 ,

𝑊𝑁 ∼ (𝑌 (Σ𝑁 ) −𝑉)+ , (29)

where 𝑈,𝑉 are as defined in Corollary 2, 𝑊𝑁 ∼ max𝑘∈{0,...,𝑁} 𝑌 (Σ𝑘 ), and the pairs of
random variables on the right of each of the equations in (29) are independent.

Corollary 4 below, being an immediate consequence of Corollary 3, directly implies The-
orem 1. In the sequel, 𝑀 ∼ G(𝑝) means that 𝑀 is geometrically distributed, in the sense
that P(𝑀 = 𝑛) = 𝑝(1 − 𝑝)𝑛−1, 𝑛 = 1, 2, . . . for 𝑝 ∈ [0, 1]. As a consequence, we have that
𝑁𝛽,𝜔 + 1 ∼ G(𝑞), recalling that 𝑞 = 𝛽/(𝛽 +𝜔), cf. (2). In addition, B(𝑞) corresponds to the
Bernoulli distribution with success probability 𝑞 ∈ [0, 1].

Corollary 4 Assume that𝑇𝜁 ∼ exp(𝜁) and 𝜏𝑖 ∼ exp(𝛽+𝜔), 𝑖 = 1, 2, . . . . Then for 𝛽, 𝜔 > 0
we have that

𝑌 (𝑇𝛽) ∼ 𝑌 (𝑇𝛽+𝜔) +𝑊𝑁𝛽,𝜔
,

𝑊𝑁𝛽,𝜔
∼ 𝐼 (𝑌 (𝑇𝛽) −𝑉)+, (30)

where

𝐼 ∼ 1{𝑁𝛽,𝜔≥1} ∼ B(𝑞),
𝑊𝑁𝛽,𝜔

∼ max
𝑘∈{0,...,𝑁𝛽,𝜔}

𝑌 (Σ𝑘 ),

𝑉 ∼ 𝑌 (𝑇𝛽+𝜔) − 𝑌 (𝑇𝛽+𝜔), (31)

and the random variables on the right of each of the equations in (30) are assumed inde-
pendent.

Proof. With 𝜏𝑖 ∼ exp(𝛽 + 𝜔), it is easily verified that one has that Σ𝑁𝛽,𝜔+1 ∼ exp(𝛽). In
addition, Σ𝑁𝛽,𝜔

∼ 𝐼 Σ𝑁𝛽,𝜔+1 ∼ 𝐼 𝑇𝛽, where 𝐼, 𝑇𝛽 are independent, so that

(𝑌 (Σ𝑁𝛽,𝜔
) −𝑉)+ ∼ 𝐼 (𝑌 (𝑇𝛽) −𝑉)+. (32)

The result now follows from Corollary 3. □

Remark 6 Since for any Lévy process 𝑌 it holds that 𝑌 (𝑡) − 𝑌 (𝑡) ∼ −𝑌 (𝑡) where 𝑌 (𝑡) :=
inf𝑠∈[0,𝑡] 𝑌 (𝑠), we may replace what is written by 𝑉𝑖 ∼ −𝑌 (𝜏𝑖+1) or 𝑉 ∼ −𝑌 (𝜏), in the
obvious places. ^

11



Now we are in a position to claim that the above recursion approach answers Question 2 of
Section 1 affirmatively. Indeed, the simple recursions (17) and (19) bring us via elementary
steps to an alternative proof of Theorem 1, by making appropriate choices of 𝑈𝑛+1, 𝑉𝑛 in
(19). It should be observed that another elementary proof one might hope for is to rely on
conditioning on the first event (being either an inspection or a killing), with the running
maximum being 𝑌 (𝑇𝛽+𝜔) until this event, but so far we have not been successful in proving
Theorem 1 along these lines.
Question 3 (concerning extensions of Theorem 1, while remaining in the one-dimensional
setup) is also answered affirmatively. Firstly, one has the transient decomposition in Corol-
lary 1; secondly, other choices of𝑈,𝑉 than the one made in that corollary are possible; and
thirdly, we mention three further generalizations in the remainder of this section.
Remark 7 A consequence of Corollary 4 is that we may repeat this decomposition for an
increasing sequence of 𝛽𝑛 diverging to infinity (with 𝛽0 = 𝛽) and obtain (since 𝑌 (𝑇𝛽𝑛)
vanishes in distribution) that

𝑌 (𝑇𝛽) ∼
∞∑︁
𝑛=1

𝑅𝑛, (33)

where 𝑅𝑛 are independent with

𝑅𝑛 ∼ max
𝑘∈{0,...,𝑁 (𝛽𝑛−1/𝛽𝑛)}

𝑆𝑘 (𝛽𝑛), (34)

and 𝑆𝑘 (𝛽) is a random walk with i.i.d. increments distributed like𝑌 (𝑇𝛽) and𝑁 (𝑝)+1 ∼ G(𝑝)
is independent of the random walk. A special case is 𝛽𝑛 = 𝛽𝑐𝑛 where 𝑐 > 1, which gives
𝑅𝑛 ∼ max𝑛∈{0,...,𝑁 (1/𝑐)} 𝑆𝑛 (𝛽𝑐𝑛).
Letting 𝑅0 ∼ sup𝑘∈N 𝑆𝑘 (𝛽) we also have from (28):

𝑌 (∞) ∼
∞∑︁
𝑛=0

𝑅𝑛 . (35)

Note that the left hand sides of (33) and (35) (and hence also the right hand sides) are
independent of the particular choice of the sequence (𝛽𝑛)𝑛∈N. For the special case 𝛽𝑛 = 𝛽𝑐𝑛,
they are independent of the particular choice of 𝑐. ^

Remark 8 If instead of a Lévy process, (𝑌𝑛)𝑛∈N is a random walk with i.i.d. increments,
𝜏, 𝜏1, 𝜏2, . . . ∼ G(𝑝) with 𝑝 ∈ (0, 1) and 𝑁 + 1 ∼ G(𝑝′), then it is easy to check that Σ𝑁+1 ∼
G(𝑝𝑝′); this is a consequence of the memoryless property (but one could alternatively prove
this by using generating functions). It is well known that, with 𝑌𝑛 = max𝑘∈{0,...,𝑛} 𝑌𝑘 , 𝑌𝜏 and
𝑌𝜏 −𝑌𝜏 (with 𝜏 ∼ G(𝑝)) are independent in this case as well. Hence, with 𝑇𝛽 and 𝑇𝛽+𝜔 being
replaced by the random variables G(𝑝𝑝′) and G(𝑝), respectively, Corollaries 1-4 (and the
remarks that follow) are valid for this discrete time case as well.
Reverting back to the Lévy case, the above may be applied, in particular, to the random
walk (𝑌𝑛𝑎)𝑛∈N for any given 𝑎 > 0 (having infinitely divisible increments). ^

12



Along the lines of the proof of Corollary 1, the following may also be easily shown.

Corollary 5 Assume that 𝑌1, 𝑌2, . . . are Lévy processes and that 𝜏1, 𝜏2, . . . are expo-
nentially distributed. Neither sequence is assumed identically distributed. Assume that
𝑌1, 𝑌2, . . . , 𝜏1, 𝜏2, . . . are independent. Denote Σ0 := 0 and Σ𝑛 :=

∑𝑛
𝑖=1 𝜏𝑖 for 𝑛 ∈ {1, 2, . . .}.

For a given 𝑛 ∈ {1, 2, . . .} define the process {𝑋𝑛 (𝑡), 𝑡 ∈ [0, Σ𝑛]} as follows:

𝑋𝑛 (𝑡) :=


𝑌 𝑛 (𝑡), 0 ≤ 𝑡 < 𝜏𝑛,
𝑌 𝑛 (𝜏𝑛) + 𝑌 𝑛−1(𝑡 − 𝜏𝑛), 𝜏𝑛 ≤ 𝑡 < 𝜏𝑛 + 𝜏𝑛−1,
...

...

𝑌 𝑛 (𝜏𝑛) + . . . + 𝑌2(𝜏2) + 𝑌1(𝑡 − (Σ𝑛 − 𝜏1)), Σ𝑛 − 𝜏1 ≤ 𝑡 < Σ𝑛 .

(36)

Finally, set 𝑍𝑛 := sup𝑠∈[0,Σ𝑛] 𝑋
𝑛 (𝑠), 𝑈𝑖 := sup𝑠∈[0,𝜏𝑖] 𝑌

𝑖 (𝑠) for 𝑖 ∈ {1, 2, . . .} and 𝑉𝑖 :=
𝑈𝑖+1 − 𝑌 𝑖+1(𝜏𝑖+1) for 𝑖 ∈ N. Then

𝑍𝑛+1 ∼ 𝑈𝑛+1 +𝑊𝑛,

𝑊𝑛 ∼ (𝑍𝑛 −𝑉𝑛)+, (37)

where, with 𝑆0 := 0 and 𝑆𝑛 :=
∑𝑛
𝑖=1(𝑈𝑖 − 𝑉𝑖), 𝑊𝑛 = 𝑆𝑛 − min𝑘∈{0,...,𝑛} 𝑆𝑘 . Moreover, the

pairs of random variables appearing on the right of each equation in (37) are independent.

4 Unique solution to a Lindley type equation
In this section we study a generalization of the classical Lindley recursion, in which𝑊𝑛+1 =

(𝑊𝑛 + 𝑋𝑛)+, with special attention to its steady-state counterpart 𝑊 ∼ (𝑊 + 𝑋)+. In
Proposition 2 we provide a unique solution to the equation 𝑊 ∼ 𝐼 (𝑊 + 𝑋)+, with 𝐼 a
Bernoulli random variable. We subsequently derive Corollary 6 from it, and observe that
this corollary immediately implies Corollary 4 – and hence Theorem 1. At the end of the
section we also discuss Question 4 posed in Section 1.
In preparation we first observe the following. From the proof of Corollary 1 it follows that
if 𝑇, 𝑋 are nonnegative independent random variables then

𝑌 (𝑇 + 𝑋) ∼ 𝑈 + (𝑌 (𝑇) −𝑉)+, (38)

where 𝑌 (𝑇) and (𝑈,𝑉) ∼ (𝑌 (𝑋), 𝑌 (𝑋) − 𝑌 (𝑋)) are independent. In this case 𝑈,𝑉 are not
necessarily independent.
Now assume that 𝑇 is exponentially distributed. In addition, take 𝑇 ′ distributed like
𝑇 and independent of 𝑇 and 𝑋 . Using the memoryless property it is easily checked that
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𝑇 ∼ 𝑋∧𝑇 ′+1{𝑋<𝑇 ′}𝑇 and we may replace𝑇, 𝑋 in the previous paragraph by 1{𝑋<𝑇 ′}𝑇
′, 𝑋∧𝑇 ′

and obtain
𝑌 (𝑇) ∼ 𝑈 + 𝐼 (𝑌 (𝑇) −𝑉)+, (39)

where
(𝑈,𝑉, 𝐼) ∼ (𝑌 (𝑋 ∧ 𝑇), 𝑌 (𝑋 ∧ 𝑇) − 𝑌 (𝑋 ∧ 𝑇), 1{𝑋<𝑇}) (40)

is independent of 𝑌 (𝑇). One could also prove this by distinguishing between 𝑋 ≥ 𝑇 , for
which (39) trivially holds, and 𝑋 < 𝑇 , for which case one can follow the reasoning leading
to (27).

Remark 9 When 𝑋 is also exponentially distributed, then 𝑋 ∧ 𝑇 and 𝐼 are independent,
𝑋 ∧ 𝑇 is exponentially distributed and 𝑈,𝑉, 𝐼 are independent. Otherwise this is false. If
P(𝑋 = 0) < 1 (otherwise, 𝑈 = 𝑉 = 0 and 𝐼 = 1), then 𝑋 ∧ 𝑇 and 1{𝑋<𝑇} are independent
iff 𝑋 is also exponentially distributed. To see this, note that if P(𝑋 = 𝑡) > 0 for some 𝑡
then in order for the events {min(𝑋,𝑇) = 𝑡} and {𝑇 > 𝑋} to be independent it is necessary
that P(𝑇 = 𝑡) > 0 which does not hold. Therefore the distribution of 𝑋 must also be
continuous and the assumptions of [16] are satisfied. Using [16] we may now conclude that
P(𝑋 > 𝑡) = P(𝑇 > 𝑡)𝑎 for some 𝑎 > 0 and all 𝑡, where the right hand side, and hence also
the left hand side, is the tail of an exponential distribution. ^

In view of (39) it is of interest to explore whether there is a unique distribution satisfying
an equation of the form

𝑍 ∼ 𝑈 + 𝐼 (𝑍 −𝑉)+, (41)
where𝑈,𝑉 ≥ 0, 𝐼 is an indicator and𝑈, 𝐼,𝑉, 𝑍 on the right (the distributions of𝑈,𝑉, 𝐼 are
considered known) are assumed independent. Consider 𝑊 ∼ 𝐼 (𝑍 − 𝑉)+ when 𝑍 satisfies
(41). Then, taking (𝑈′, 𝑉 ′, 𝐼′) to be an independent copy of (𝑈,𝑉, 𝐼) which is independent
of 𝑍 ,

𝑊 ∼ 𝐼 (𝑍 −𝑉)+ ∼ 𝐼 (𝑈′ + 𝐼′ (𝑍 −𝑉 ′)+ −𝑉)+

∼ 𝐼 (𝑈′ +𝑊 −𝑉)+ ∼ 𝐼 (𝑊 +𝑈 −𝑉)+ , (42)

where𝑈,𝑉, 𝐼,𝑊 on the right are assumed independent.

Proposition 2 Assume that 𝐼 ∼ B(1 − 𝑝), 𝑝 ∈ (0, 1). Then

𝑊 ∼ 𝐼 (𝑊 + 𝑋)+, (43)

where 𝑋, 𝐼,𝑊 on the right are assumed independent, iff

𝑊 ∼ 𝑆𝑁 ≡ max
𝑘∈{0,...,𝑁}

𝑆𝑘 , (44)

where 𝑆 ≡ (𝑆𝑘 )𝑘∈N is a random walk with i.i.d. increments distributed like 𝑋 , 𝑁 is indepen-
dent of 𝑆 and 𝑁 + 1 ∼ G(𝑝).
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We note that unlike Lindley’s equation 𝑊 ∼ (𝑊 + 𝑋)+, where one must assume that
𝑆𝑛 → −∞ a.s., other than 𝑝 ∈ (0, 1) no further stability requirements are needed here.
Proof. Assume that 𝑊0, 𝑋1, 𝑋2, . . . , 𝐼1, 𝐼2, . . . are independent. 𝑃(𝑊0 ≥ 0) = 1 and for
𝑖 ≥ 1, 𝑋𝑖 ∼ 𝑋 , 𝐼𝑖 ∼ 𝐼. Define the following recursion:

𝑊𝑛 = 𝐼𝑛 (𝑊𝑛−1 + 𝑋𝑛)+, (45)

for 𝑛 ∈ {1, 2, . . .}. Then (𝑊𝑛)𝑛∈N is a (possibly delayed) regenerative process with re-
generation epoch 𝑁 + 1 = inf{𝑛 : 𝐼𝑛 = 0}, which has an aperiodic distribution. In every
regenerative cycle starting from the second, the process starts from zero. Therefore 𝑊𝑛

converges in distribution to some𝑊∞ of which the distribution is independent of the distri-
bution of 𝑊0. In order to identify this distribution, let us assume that 𝑊0 = 0. In this case,
𝑊𝑛 = (𝑊𝑛−1 + 𝑋𝑛)+ for 𝑛 ∈ {1, . . . , 𝑁}, thus for each such 𝑛,

𝑊𝑛 = 𝑆𝑛 − min
𝑘∈{0,...,𝑛}

𝑆𝑘 ∼ max
𝑘∈{0,...,𝑛}

𝑆𝑘 ≡ 𝑆𝑛 , (46)

where 𝑆 is a random walk with increments 𝑋1, 𝑋2, . . .. Regenerative theory implies that,
for every nonnegative (or bounded) Borel function 𝑓 ,

E 𝑓 (𝑊∞) =
1

E(𝑁 + 1)E
𝑁∑︁
𝑛=0

𝑓 (𝑊𝑛) = 𝑝 E
𝑁∑︁
𝑛=0

𝑓 (𝑊𝑛)

= 𝑝 E
∞∑︁
𝑛=0

𝑓 (𝑊𝑛)1{𝑁≥𝑛} =
∞∑︁
𝑛=0
E 𝑓 (𝑊𝑛) (1 − 𝑝)𝑛𝑝

=

∞∑︁
𝑛=0
E 𝑓 (𝑆𝑛) (1 − 𝑝)𝑛𝑝 = E 𝑓 (𝑆𝑁 ) , (47)

so that𝑊∞ ∼ 𝑆𝑁 . Clearly𝑊∞ ∼ 𝐼 (𝑊∞ + 𝑋)+ where 𝐼, 𝑋,𝑊∞ on the right are independent,
so that a solution to (43) exists. For any distribution of 𝑊 that satisfies (43), we can start
from 𝑊0 ∼ 𝑊 and infer that 𝑊𝑛 ∼ 𝑊 for all 𝑛 ≥ 0 and thus also 𝑊∞ ∼ 𝑊 . This implies
uniqueness. □

In view of (41) and (42), the following is now immediate.

Corollary 6 Assume that𝑈,𝑉 ≥ 0, and that 𝐼 ∼ B(1 − 𝑝) for 𝑝 ∈ (0, 1). Then

𝑍 ∼ 𝑈 + 𝐼 (𝑍 −𝑉)+ , (48)

where𝑈,𝑉, 𝐼, 𝑍 on the right are assumed independent, iff

𝑍 ∼ 𝑈 +𝑊 , (49)

where 𝑊 ∼ 𝑆𝑁 is the solution from Proposition 2 with 𝑋 ∼ 𝑈 − 𝑉 and 𝑈,𝑊 assumed
independent. Moreover,𝑊 ∼ 𝐼 (𝑍 −𝑉)+.
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We now observe that Corollary 4 (and hence Theorem 1) and similarly the related discrete
time version (see Remark 8), can also be viewed as a consequence of Corollary 6. To see
this, recall that 𝑇𝛽 ∼ exp(𝛽) for 𝛽 > 0. We have that 𝑇𝛽 ∼ 𝑇𝛽+𝜔 + 𝐼 𝑇𝛽 where 𝑇𝛽+𝜔, 𝑇𝛽, 𝐼 on
the right are assumed independent and 𝐼 ∼ B(𝜔/(𝛽 + 𝜔)). Now,

𝑌 (𝑇𝛽) ∼ 𝑌 (𝑇𝛽+𝜔 + 𝐼 𝑇𝛽) ∼ 𝑈 + (𝑌 (𝐼 𝑇𝛽) −𝑉)+ = 𝑈 + 𝐼 (𝑌 (𝑇𝛽) −𝑉)+ , (50)

where 𝑈 ∼ 𝑌 (𝑇𝛽+𝜔), 𝑉 ∼ 𝑌 (𝑇𝛽+𝜔) − 𝑌 (𝑇𝛽+𝜔), and 𝑈,𝑉, 𝐼,𝑌 (𝑇𝛽) are independent. As
𝑈 −𝑉 ∼ 𝑌 (𝑇𝛽+𝜔) and thus

𝑆𝑛 ∼ 𝑌 (𝑇𝛽+𝜔,1 + · · · + 𝑇𝛽+𝜔,𝑛), (51)

Corollary 6 implies Corollary 4.
It is known that when 𝑆𝑛 → −∞ a.s., there is a unique solution to 𝑊 ∼ (𝑊 + 𝑋)+ where
𝑊, 𝑋 are independent which satisfies 𝑊 ∼ sup𝑘∈N 𝑆𝑘 . Therefore in this case there is a
unique solution to 𝑍 ∼ 𝑈 + (𝑍 − 𝑉)+ where 𝑈,𝑉 ≥ 0 and where 𝑈,𝑉, 𝑍 on the right are
independent, which satisfies 𝑍 ∼ 𝑈 +𝑊 (as well as 𝑊 ∼ (𝑍 − 𝑉)+). This may be used to
give an alternative derivation of Corollary 2.

Remark 10 A similar approach may be applied to the recursion 𝑊𝑛 = 𝐼𝑛 (𝑊𝑛−1 + 𝑋𝑛)+
where the 𝐼𝑛 are independent Bernoulli random variables, but not necessarily identically
distributed. Whenever 𝐼𝑛 = 0 we probabilistically restart the sequence of indicators in order
to obtain a natural regeneration epoch. Namely, if 𝑁 is an integer valued random variable,
then, whenever P(𝑁 ≥ 𝑛 − 1) > 0, let 𝐼𝑛 ∼ B(𝑝𝑛), where 𝑝𝑛 = P(𝑁 ≥ 𝑛)/P(𝑁 ≥ 𝑛 − 1).
Then 𝑁 = inf{𝑛 : 𝐼𝑛+1 = 0} and, similar as in (47), we obtain that the limiting distribution
of𝑊𝑛 is the distribution of 𝑆𝑁𝑒

where

P(𝑁𝑒 = 𝑛) :=
P(𝑁 ≥ 𝑛)
E𝑁 + 1

. (52)

Corollary 6 may be modified accordingly. Note that in case 𝑁 + 1 ∼ G(𝑝) we have that
𝑁𝑒 ∼ 𝑁 . ^

Remark 11 We close this section discussing Question 4, raised in Section 1. There we
asked for an explanation of the intriguing fact that the inspection rate 𝜔 only appears in
the right hand side of (1), and not in its left hand side. The same appears to hold in the
two-dimensional decomposition of Theorem 2. While it is intuitively obvious that the first
vector in the right hand side of that decomposition is decreasing in 𝜔 and the second vector
is increasing, it is remarkable that the two 𝜔 contributions apparently cancel; it indicates
that there is an intimate relationship between (𝑌 (𝑇𝛽+𝜔), 𝐺 (𝑇𝛽+𝜔)) and (𝑆𝑁𝛽,𝜔

, 𝐺𝑁𝛽,𝜔
). In

the one-dimensional case of Theorem 1, the explanation of this phenomenon seems to lie
in the distributional identity 𝑇𝛽 ∼ 𝑇𝛽+𝜔 + 𝐼 𝑇𝛽 with 𝐼 ∼ B(𝜔/(𝛽 + 𝜔)) and 𝑇𝛽+𝜔, 𝑇𝛽 and 𝐼
independent. Observe that this identity has the same feature of𝜔 only appearing in the right
hand side. This identity is used to derive (50), which is an essential step in the alternative
proof of Corollary 4 and hence of Theorem 1. ^
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5 A two-dimensional recursion
The goal of the present section is to give an elementary and transparent proof of the two-
dimensional decomposition of Theorem 2. We do so using a recursion of the type that was
used in Section 3 to deal with its one-dimensional counterpart (i.e., Theorem 1).
Theorem 2 has, next to the running maximum, as a second component the time epoch at
which that maximum last occurs. Hence, while starting from a Lindley recursion between
deterministic numbers 𝑤1, 𝑤2, . . . , 𝑤𝑛 (just like in Section 3), we now add as second
component the first index at which the largest of those 𝑤 𝑗 occurs. It should be noticed that
there might be more than one index at which the largest 𝑤 𝑗 occurs, which requires some
care in using weak and strict inequalities; we will be working with the first index in order
to, at a later stage, end up with relations for the last time epoch (before 𝑇𝛽) at which the
supremum of the Lévy process 𝑌 is attained. We pay much attention to the set-up of the
recursion, but after the right recursion has been established, we shall be more brief, as the
procedure strongly resembles the one used in the one-dimensional case. Along the way
we indicate in various places what the one-dimensional counterpart of a two-dimensional
result is.
Let 𝑥1, 𝑥2, . . . a sequence of real numbers and 𝑥′𝑛 a sequence of nonnegative real numbers.
Consider the following two-dimensional recursion with (𝑤0, 𝑤

′
0) = (0, 0):

𝑤𝑛 := (𝑤𝑛−1 + 𝑥𝑛)+,
𝑤′
𝑛 := (𝑤′

𝑛−1 + 𝑥
′
𝑛)1{𝑤𝑛−1+𝑥𝑛≥0} . (53)

Define the vectors (𝑠0, 𝑠
′
0) := (0, 0) and (𝑠𝑛, 𝑠′𝑛) :=

∑𝑛
𝑖=1(𝑥𝑖, 𝑥′𝑖) for 𝑛 ∈ {1, 2, . . .}. With

I𝑛 := {0, 1, . . . , 𝑛}, let

𝑗𝑛 := min
{
𝑗 ∈ I𝑛 : 𝑠 𝑗 = min

𝑖 ∈ I𝑛
𝑠𝑖

}
. (54)

Then for every 𝑗 ∈ { 𝑗𝑛, . . . , 𝑛}, we have that min𝑖∈{1,..., 𝑗} 𝑠𝑖 = 𝑠 𝑗𝑛 and thus

𝑤 𝑗 = 𝑠 𝑗 − min
𝑖∈{1,..., 𝑗}

𝑠𝑖 = 𝑠 𝑗 − 𝑠 𝑗𝑛 . (55)

Also, when 𝑗𝑛 < 𝑛, then we have that 𝑠 𝑗 ≥ 𝑠 𝑗𝑛 for 𝑗 ∈ { 𝑗𝑛, . . . , 𝑛} and thus

𝑤 𝑗−1 + 𝑥 𝑗 = 𝑠 𝑗−1 − 𝑠 𝑗𝑛 + 𝑥 𝑗 = 𝑠 𝑗 − 𝑠 𝑗𝑛 ≥ 0. (56)

When 𝑗𝑛 > 0 it clearly follows that 𝑤 𝑗𝑛−1 + 𝑥 𝑗𝑛 < 𝑤 𝑗𝑛 = 0 and thus, by (53), 𝑤′
𝑗𝑛
= 0. When

𝑗𝑛 = 0 then 𝑤′
0 = 0 by assumption. Observe that we had a strict inequality in the previous

line, because 𝑗𝑛 is the first index at which the overall minimum is attained. Recalling that
𝑥′1, 𝑥

′
2, . . . are nonnegative, it follows that

𝑤′
𝑛 = 𝑠

′
𝑛 − 𝑠′𝑗𝑛 . (57)
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Let us denote by 𝑚′
𝑛, 𝑚𝑛, 𝑘𝑛 the values corresponding to 𝑤′

𝑛, 𝑤𝑛, 𝑛 − 𝑗𝑛 when the sequence
((𝑥1, 𝑥

′
1), . . . , (𝑥𝑛, 𝑥

′
𝑛)) is reversed, that is, replaced by ((𝑥𝑛, 𝑥′𝑛), . . . , (𝑥1, 𝑥

′
1)). Then, since

we can also write

𝑤𝑛 = max
𝑘∈I𝑛

(𝑠𝑛 − 𝑠𝑛−𝑘 ),

𝑛 − 𝑗𝑛 = 𝑛 − min
{
𝑗 ∈ I𝑛 | 𝑠 𝑗 = min

𝑖∈I𝑛
𝑠𝑖

}
= max

{
𝑘 ∈ I𝑛 | 𝑠𝑛−𝑘 = min

𝑖∈I𝑛
𝑠𝑖

}
= max

{
𝑘 ∈ I𝑛 | 𝑠𝑛−𝑘 = min

𝑖∈I𝑛
𝑠𝑛−𝑖

}
= max

{
𝑘 ∈ I𝑛 | 𝑠𝑛 − 𝑠𝑛−𝑘 = max

𝑖∈I𝑛
(𝑠𝑛 − 𝑠𝑛−𝑖)

}
,

𝑤′
𝑛 = 𝑠

′
𝑛 − 𝑠′𝑛−(𝑛− 𝑗𝑛) , (58)

it follows that

𝑚𝑛 = 𝑠𝑛 = max
𝑘∈I𝑛

𝑠𝑘 = 𝑠𝑘𝑛 ,

𝑘𝑛 = max{𝑘 ∈ I𝑛 | 𝑠𝑘 = 𝑠𝑛},
𝑚′
𝑛 = 𝑠

′
𝑘𝑛
. (59)

Hence, replacing (𝑥𝑖, 𝑥′𝑖) by i.i.d. random pairs (𝑋𝑖, 𝑋′
𝑖
) and similarly replacing𝑤𝑛, 𝑤′

𝑛, 𝑘𝑛, 𝑠𝑛
by random variables with corresponding capital letters, we have that

(𝑊𝑛,𝑊
′
𝑛) ∼ (𝑆𝑛, 𝑆′𝐾𝑛

) , (60)

where 𝐾𝑛 := max{𝑘 ∈ I𝑛 : 𝑆𝑘 = 𝑆𝑛} (the index of the last running maximum until
𝑛, that is) and we note that it is easy to verify that an equivalent definition of 𝐾𝑛 is
𝐾𝑛 := max{𝑘 ∈ I𝑛 : 𝑆𝑘 = 𝑆𝑘 }. The latter follows from the maximality of 𝐾𝑛, so that for
𝑗 ∈ {𝐾𝑛 + 1, . . . , 𝑛} (when 𝐾𝑛 < 𝑛) we have that 𝑆 𝑗 < 𝑆𝑛 while 𝑆 𝑗 = 𝑆𝑛 and thus 𝑆 𝑗 < 𝑆 𝑗 .
Consider now the recursive equation with (𝑧0, 𝑧

′
0) = 0 and 𝑢𝑛, 𝑢′𝑛, 𝑣𝑛, 𝑣′𝑛 ≥ 0 for 𝑛 ∈ N (cf.

its one-dimensional counterpart in (17)):

(𝑧𝑛+1, 𝑧
′
𝑛+1) = (𝑢𝑛+1, 𝑢

′
𝑛+1) + ((𝑧𝑛, 𝑧′𝑛) + (−𝑣𝑛, 𝑣′𝑛))1{𝑧𝑛≥𝑣𝑛} . (61)

Then (𝑤𝑛, 𝑤′
𝑛) = (𝑧𝑛+1−𝑢𝑛+1, 𝑧

′
𝑛+1−𝑢

′
𝑛+1) satisfies (53) with 𝑥𝑛 = 𝑢𝑛−𝑣𝑛 and 𝑥′𝑛 = 𝑢′𝑛+𝑣′𝑛 ≥ 0.

Therefore, when ((𝑢𝑛, 𝑢′𝑛, 𝑣𝑛, 𝑣′𝑛))𝑛∈N are replaced by i.i.d. random vectors, then this results
in i.i.d. random pairs (𝑋𝑖, 𝑋′

𝑖
). As a consequence (cf. its one-dimensional counterpart in

Proposition 1),
(𝑍𝑛+1, 𝑍

′
𝑛+1) ∼ (𝑈𝑛+1,𝑈

′
𝑛+1) + (𝑆𝑛, 𝑆′𝐾𝑛

) . (62)
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Since the random pairs on the right are independent, we may take (𝑈,𝑈′) ∼ (𝑈1,𝑈
′
1) which

is independent of everything else, and conclude that

(𝑍𝑛+1, 𝑍
′
𝑛+1) ∼ (𝑈,𝑈′) + (𝑆𝑛, 𝑆′𝐾𝑛

), (63)

where the two random pairs on the right are independent. As before, 𝑛 may be replaced
by an independent nonnegative integer valued random variable 𝑁 . When 𝑆𝑛 → −∞ a.s.
(e.g., when E𝑋1 exists and is nonpositive), then 𝐾∞, 𝑆∞ are a.s. finite and this also holds for
random variables for which P(𝑁 = ∞) > 0.
We now point out how two-dimensional counterparts of Corollaries 2, 3 and 4 – and hence
finally Theorem 2 – are obtained by an appropriate choice of𝑈,𝑈′, 𝑉,𝑉 ′.
For any 𝜏, 𝑡 ≥ 0,

𝐺 (𝜏 + 𝑡) = 𝐺 (𝜏)1{𝑌 (𝜏)+𝜎𝜏𝑌 (𝑡)<𝑌 (𝜏)} + (𝜏 + 𝜎𝜏𝐺 (𝑡))1{𝑌 (𝜏)+𝜎𝜏𝑌 (𝑡)≥𝑌 (𝜏)}
= 𝐺 (𝜏) +

(
𝜎𝜏𝐺 (𝑡) + (𝜏 − 𝐺 (𝜏))

)
1{𝜎𝜏𝑌 (𝑡)≥𝑌 (𝜏)−𝑌 (𝜏)} , (64)

while we observe that (26) may be written as follows:

𝑌 (𝜏 + 𝑡) = 𝑌 (𝜏) +
(
𝜎𝜏𝑌 (𝑡) − (𝑌 (𝜏) − 𝑌 (𝜏))

)
1{𝜎𝜏𝑌 (𝑡)≥𝑌 (𝜏)−𝑌 (𝜏)} . (65)

Combining these two equations yields

(𝑌 (𝜏 + 𝑡), 𝐺 (𝜏 + 𝑡)) = (𝑌 (𝜏), 𝐺 (𝜏))

+
(
(𝜎𝜏𝑌 (𝑡), 𝜎𝜏𝐺 (𝑡)) + (−(𝑌 (𝜏) − 𝑌 (𝜏)), 𝜏 − 𝐺 (𝜏))

)
1{𝜎𝜏𝑌 (𝑡)≥𝑌 (𝜏)−𝑌 (𝜏)} , (66)

where (𝜎𝜏𝑌 (𝑡), 𝜎𝜏𝐺 (𝑡)) is distributed like (𝑌 (𝑡), 𝐺 (𝑡)) and is independent of everything
else.
Now replace 𝜏, 𝑡 by random variables. When 𝜏 is an exponentially distributed random
variable then (𝑌 (𝜏), 𝐺 (𝜏)) and (𝑌 (𝜏)−𝑌 (𝜏), 𝜏−𝐺 (𝜏)) are independent. Taking 𝜏, 𝜏1, 𝜏2, . . .
to be i.i.d. exp(𝛽 + 𝜔) distributed and 𝑡 = Σ𝑛 =

∑𝑛
𝑖=1 𝜏𝑖 then, as in Corollary 1 and via the

derivation that led to (63), we end up with the equation

(𝑌 (Σ𝑛+1), 𝐺 (Σ𝑛+1)) ∼ (𝑌 (𝑇𝛽+𝜔), 𝐺 (𝑇𝛽+𝜔)) + (𝑆𝑛, 𝑆′𝐾𝑛
), (67)

where 𝑆′
𝐾𝑛

is the time until we observe the last maximum of the random walk with increments
distributed like 𝑌 (𝑇𝛽+𝜔) until the 𝑛-th Poisson inspection. When 𝑛 → ∞ we obtain the
(𝑌, 𝐺) version of Corollary 2 and for any distribution of 𝑁 we obtain this version of
Corollary 3. In particular, when 𝑁 + 1 is geometrically distributed we have the (𝑌, 𝐺)
version of Corollary 4 which implies Theorem 2.
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Remark 12 We briefly return to Question 4 of Section 1 regarding the fact that the inspec-
tion rate 𝜔 only appears on the right hand side of (1) and not the left hand side. We already
observed in Remark 11 that the same appears to hold in the two-dimensional decomposition
of Theorem 2. An explanation in the one-dimensional case was found in the distributional
identity 𝑇𝛽 ∼ 𝑇𝛽+𝜔 + 𝐼 𝑇𝛽 with 𝐼 ∼ B(𝜔/(𝛽 + 𝜔)) and 𝑇𝛽+𝜔, 𝑇𝛽 and 𝐼 independent. This
identity has the same feature of 𝜔 only appearing in the right hand side, and this identity
is used to derive (50), which is an essential step in the alternative proof of Corollary 4
and hence of Theorem 1. In the present section, we could have given a slightly different
proof of Theorem 2 by using a two-dimensional (i.e., (𝑌, 𝐺)) version of (50). That version
is obtained by taking 𝜏 = 𝑇𝛽+𝜔 and 𝑡 = 𝐼 𝑇𝛽 in (66), so that 𝜏 + 𝑡 = 𝑇𝛽. We thus obtain
insight into the absence of the inspection rate 𝜔 in the left hand side of the two-dimensional
decomposition. ^

Remark 13 It is straightforward to observe that the approach in this section is also valid
when 𝑥′ is a vector of any finite dimension. Therefore it also directly follows that the follow-
ing (modest) generalization is possible: if 𝐽 = {𝐽 (𝑡), 𝑡 ≥ 0} is a multivariate subordinator
which is independent of everything else, then

(𝑌 (𝑇𝛽), 𝐽 (𝐺 (𝑇𝛽))) ∼ (𝑌 (𝑇𝛽+𝜔), 𝐽 (𝐺 (𝑇𝛽+𝜔))) + (𝑆𝑁 , 𝐽 (𝑆′𝐾𝑁
)) , (68)

where the two pairs on the right are independent. ^

Finally, Proposition 2 (regarding the unique solution of the generalized Lindley equation)
may be easily extended to the current case as well with the same proof. Namely, the unique
solution of the equation

(𝑍, 𝑍′) ∼ (𝑈,𝑈′) + 𝐼 ((𝑍, 𝑍′) + (−𝑉,𝑉 ′)) , (69)

where 𝐼 and the three pairs on the right are independent, is

(𝑍, 𝑍′) ∼ (𝑈,𝑈′) + (𝑆𝑁 , 𝑆′𝐾𝑁
), (70)

where 𝑁 + 1 is geometrically distributed.
Also, as in Remark 10, considering instead a regenerative sequence with 𝑁 being an integer
valued random variable with finite mean, we replace 𝑁 with 𝑁𝑒 in the right hand side of
(70).

6 Spectrally one-sided cases
In this section we briefly discuss the case that the Lévy process 𝑌 is spectrally positive or
spectrally negative. As it turns out, we can then easily obtain explicit expressions for the
joint transforms of (𝑌 (𝑇𝛽), 𝐺 (𝑇𝛽)) and, hence, of (𝑆𝑁𝛽,𝜔

, 𝐺𝑁𝛽,𝜔
). The spectrally positive

case is considered in Subsection 6.1, and the spectrally negative case in Subsection 6.2. In
both cases, the starting point is the expression given in Remark 1.
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6.1 The spectrally positive case
When the Lévy process 𝑌 is spectrally positive, i.e., it has no downward jumps, then it
follows from [11, Section 6.5.2] that

𝜅(𝛽, 𝛼) = 𝛽 − 𝜑(𝛼)
𝜓(𝛽) − 𝛼, (71)

where 𝜑(𝛼) denotes the Laplace exponent logE exp(−𝛼𝑌 (1)) of the Lévy process 𝑌 and
𝜓(𝛼) its right-inverse. Hence it follows from (12) that

Ee−𝛼𝑆𝑁𝛽,𝜔
−𝛾𝐺𝑁𝛽,𝜔 =

𝛽

𝜓(𝛽)
𝜓(𝛽 + 𝛾) − 𝛼
𝛽 + 𝛾 − 𝜑(𝛼)

𝜓(𝛽 + 𝜔)
𝛽 + 𝜔

𝛽 + 𝜔 + 𝛾 − 𝜑(𝛼)
𝜓(𝛽 + 𝜔 + 𝛾) − 𝛼 . (72)

The known bivariate transform (cf. (4))

𝛽

𝜓(𝛽)
𝜓(𝛽 + 𝛾) − 𝛼
𝛽 + 𝛾 − 𝜑(𝛼) (73)

for the continuously inspected case is recovered when sending 𝜔 to ∞. Furthermore,
moments are readily obtained; in particular,

E𝑆𝑁𝛽,𝜔
=

1
𝜓(𝛽) −

1
𝜓(𝛽 + 𝜔) −

𝜑′(0)
𝛽

+ 𝜑′(0)
𝛽 + 𝜔, (74)

E𝐺𝑁𝛽,𝜔
= −𝜓

′(𝛽)
𝜓(𝛽) + 𝜓

′(𝛽 + 𝜔)
𝜓(𝛽 + 𝜔) + 1

𝛽
− 1
𝛽 + 𝜔, (75)

E
[
𝑆𝑁𝛽,𝜔

𝐺𝑁𝛽,𝜔

]
=

𝜓′(𝛽)
𝜓(𝛽)𝜓(𝛽 + 𝜔) +

𝜓′(𝛽 + 𝜔)
𝜓(𝛽)𝜓(𝛽 + 𝜔) − 2

𝜓′(𝛽 + 𝜔)
(𝜓(𝛽 + 𝜔))2 +

𝜑′(0)
(

1
𝛽
− 1
𝛽 + 𝜔

) (
𝜓′(𝛽)
𝜓(𝛽) − 𝜓′(𝛽 + 𝜔)

𝜓(𝛽 + 𝜔)

)
+(

1
𝛽
− 1
𝛽 + 𝜔

) (
1

𝜓(𝛽 + 𝜔) −
1

𝜓(𝛽)

)
− 2

𝜑′(0)
𝛽

( 1
𝛽
− 1
𝛽 + 𝜔 ). (76)

Hence

Cov(𝑆𝑁𝛽,𝜔
, 𝐺𝑁𝛽,𝜔

) = −𝜑′(0)
(

1
𝛽2 − 1

(𝛽 + 𝜔)2

)
+ 𝜓′(𝛽)
(𝜓(𝛽))2 − 𝜓′(𝛽 + 𝜔)

(𝜓(𝛽 + 𝜔))2 . (77)

Furthermore, assuming that 𝜑′′(0) < ∞,

Var 𝑆𝑁𝛽,𝜔
= 𝜑′′(0)

(
1
𝛽
− 1
𝛽 + 𝜔

)
+ 𝜑′(0))2

(
1
𝛽2 − 1

(𝛽 + 𝜔)2

)
−
(

1
𝜓(𝛽)

)2
+
(

1
𝜓(𝛽 + 𝜔)

)2
,

(78)
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Var𝐺𝑁𝛽,𝜔
=

1
𝛽2 − 1

(𝛽 + 𝜔)2 + 𝜓
′′(𝛽)
𝜓(𝛽) − 𝜓′′(𝛽 + 𝜔)

𝜓(𝛽 + 𝜔) −
(
𝜓′(𝛽)
𝜓(𝛽)

)2
+
(
𝜓′(𝛽 + 𝜔)
𝜓(𝛽 + 𝜔)

)2
. (79)

Of course the correlation coefficient between the running maximum at inspection epochs
before 𝑇𝛽 and the last epoch of its occurrence immediately follows from the last three
formulas. Note that the terms in (78) and (79) involving 𝛽 (resp. 𝛽 +𝜔) reveal the variance
of 𝑌 (𝑇𝛽) and 𝐺̄ (𝑇𝛽) (resp. the variance of 𝑌 (𝑇𝛽+𝜔) and 𝐺̄ (𝑇𝛽+𝜔)).

6.2 The spectrally negative case
When the Lévy process 𝑌 is spectrally negative, i.e., it has no upward jumps, then it follows
from [11, Section 6.5.2] that

𝜅(𝛽, 𝛼) = Ψ(𝛽) + 𝛼, (80)
where Ψ(𝛼) is the right-inverse of the cumulantΦ(𝛼) = logE exp(𝛼𝑌 (1)). Hence it follows
from (12) that

Ee−𝛼𝑆𝑁𝛽,𝜔
−𝛾𝐺𝑁𝛽,𝜔 =

Ψ(𝛽)
Ψ(𝛽 + 𝜔)

Ψ(𝛽 + 𝜔 + 𝛾) + 𝛼
Ψ(𝛽 + 𝛾) + 𝛼 . (81)

This reveals that 𝑆𝑁𝛽,𝜔
has an atom Ψ(𝛽)/Ψ(𝛽+𝜔) at zero and is exp(Ψ(𝛽)) distributed with

the complementary probability. Also, when considering the limit as 𝜔 → ∞ we recover
the known expression Ψ(𝛽)/(Ψ(𝛽 + 𝛾) + 𝛼). Furthermore, the transform of the time of the
last running maximum has the following elegant expression:

Ee−𝛾𝐺𝑁𝛽,𝜔 =
Ψ(𝛽)

Ψ(𝛽 + 𝜔)
Ψ(𝛽 + 𝜔 + 𝛾)
Ψ(𝛽 + 𝛾) .

It requires some elementary calculus to verify that

E𝑆𝑁𝛽,𝜔
=

1
Ψ(𝛽) −

1
Ψ(𝛽 + 𝜔) , (82)

E𝐺𝑁𝛽,𝜔
=
Ψ′(𝛽)
Ψ(𝛽) − Ψ′(𝛽 + 𝜔)

Ψ(𝛽 + 𝜔) , (83)

E
[
𝑆𝑁𝛽,𝜔

𝐺𝑁𝛽,𝜔

]
=
Ψ′(𝛽)
Ψ(𝛽)

(
1

Ψ(𝛽) −
1

Ψ(𝛽 + 𝜔)

)
+ 1
Ψ(𝛽)

(
Ψ′(𝛽)
Ψ(𝛽) − Ψ′(𝛽 + 𝜔)

Ψ(𝛽 + 𝜔)

)
, (84)

so that
Cov(𝑆𝑁𝛽,𝜔

, 𝐺𝑁𝛽,𝜔
) = Ψ′(𝛽)

(Ψ(𝛽))2 − Ψ′(𝛽 + 𝜔)
(Ψ(𝛽 + 𝜔))2 . (85)

Furthermore,

Var 𝑆𝑁𝛽,𝜔
=

1
(Ψ(𝛽))2 − 1

(Ψ(𝛽 + 𝜔))2 , (86)

Var𝐺𝑁𝛽,𝜔
=
Ψ′′(𝛽 + 𝜔)
Ψ(𝛽 + 𝜔) − Ψ′′(𝛽)

Ψ(𝛽) +
(
Ψ′(𝛽)
Ψ(𝛽)

)2
−
(
Ψ′(𝛽 + 𝜔)
Ψ(𝛽 + 𝜔)

)2
. (87)
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7 Concluding remarks
In this concluding section we discuss a number of ramifications of our work as well as
directions for follow-up research.

◦ Our work has an interesting implication when studying, in the context of in insurance
risk, Parisian ruin. Parisian ruin occurs for an insurance company when its capital
level has been negative for a period of at least length 𝐹. Albrecher and Ivanovs
[2] point out that, if lengths of successive excursions below zero are compared with
i.i.d. random variables 𝐹1, 𝐹2, . . . ∼ exp(𝜔) [13], then the ruin time for Parisian
ruin has the same distribution as the time until bankruptcy in the case of Poisson(𝜔)
inspections. Note that this observation adds to the importance of studying the time
until bankruptcy. Landriault et al. [13] derive explicit expressions for the Laplace
transform, with 𝑃𝑥 denoting the Parisian ruin time given that the initial capital was 𝑥,

𝑔𝛽 (𝑥) :=
∫ ∞

0
exp(−𝛽𝑦) P(𝑃𝑥 ∈ d𝑦) (88)

in [13, Corollary 3.1], and for the special case 𝑥 = 0 in [13, Corollary 3.2]. Notice
that 𝑔𝛽 (𝑥) can be viewed as the probability that Parisian ruin occurs before 𝑇𝛽.
Taking the Laplace-Stieltjes transform of −𝑔𝛽 (𝑥) with respect to 𝑥 (realizing that
𝑔𝛽 (𝑥) can be interpreted as the bankruptcy probability P(𝑆𝑁𝛽,𝜔

> 𝑥)) and adding the
contribution 𝑔𝛽 (0) due to the jump in zero, one eventually obtains the expression for
E exp(−𝛼𝑆𝑁𝛽,𝜔

) given in (72) (choosing 𝛾 = 0), as it should be.

◦ The asymptotics of the all-time bankruptcy probability in the spectrally one-sided
case were identified in [5]. This left open the case of the driving Lévy process
being spectrally two-sided. Recognizing that the process at inspection epochs is a
random walk, in principle the results in [10] reveal these asymptotics, albeit in a rather
implicit form. In [10] three cases were distinguished: the increments of the random
walk having light tails, heavy tails, and being in an intermediate regime. It would
be interesting to compare these results with their continuous-inspection counterparts
[7, 9], so as to assess the ‘information loss’ due to the Poisson inspection scheme. In
addition, the joint asymptotics of 𝑆𝑁𝛽,𝜔

and 𝐺𝑁𝛽,𝜔
could be an interesting research

topic.

◦ In the present paper we have worked with Poisson inspection epochs, but one may
wonder what happens if we work with alternative inspection schemes. It is conceiv-
able that e.g. the case of Erlang inter-inspection times is amenable for analysis (cf.
[5, Remark 3.1]), but one would ideally allow the more general class of renewal in-
spection processes. The results of [10] reveal that, for renewal inter-inspection times
and the driving Lévy process 𝑌 being light-tailed, the asymptotics of the all-time
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bankruptcy probability are of the type 𝛾e−𝜃★𝑢, with only the 𝛾 depending on the
distribution of the inter-inspection times (i.e., the decay rate 𝜃★ is unaffected). In the
case that the Lévy process is heavy-tailed, the results of [5, Section 4.2] suggest that
the inspection process may not have any impact on the asymptotics of the bankruptcy
probability.

◦ Importantly, our decomposition results do not provide us with insight into the joint
distribution of 𝑌 (𝑇𝛽) and 𝑆𝑁𝛽,𝜔

, nor into the conditional distribution of 𝑌 (𝑇𝛽) given
the value of 𝑆𝑁𝛽,𝜔

. For practical purposes, it would be useful to understand these
relations, because that helps shedding light on the likelihood of having exceeded a
certain threshold based on partial information. Ideally, one would be able to somehow
get a handle on probabilities of the type

P(𝑌 (𝑇𝛽) > 𝑢 | 𝑆0, 𝑆1, . . . , 𝑆𝑁𝛽,𝜔
) (89)

or
P(𝑌 (𝑇𝛽) > 𝑢 | 𝑆𝑁𝛽,𝜔

). (90)
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