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Abstract. We consider a class of graph-valued stochastic processes in which each vertex
has a type that fluctuates randomly over time. Collectively, the paths of the vertex
types up to a given time determine the probabilities that the edges are active or inactive
at that time. Our focus is on the evolution of the associated empirical graphon in the
limit as the number of vertices tends to infinity, in the setting where fluctuations in the
graph-valued process are more likely to be caused by fluctuations in the vertex types than
in the outcomes of the edges given these types. We derive both sample-path large deviation
principles and convergence of stochastic processes. Our approach is flexible because we can
including a class of stochastic processes with an additional layer of dependence between
the edges.
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1. Introduction

1.1. Background. Crane [13], [14], [15] was the first to develop a mathematically compre-
hensive theory to characterise the evolution of a class of time-varying countably-infinite
graphs and graphons. His starting point was the Aldous-Hoover theory for infinitely exchange-
able arrays, augmented with the assumption of càdlàg paths and the Markov properties.
His construction led to processes that are a combination of a stochastic jump process and
a deterministic flow on the space of graphons. It did not lead to diffusion-like processes
with paths of unbounded variation. In fact, such processes cannot be obtained through
exchangeable càdlàg Markov processes after projecting them onto the space of graphons,
and therefore require a relaxation of Crane’s conditions. For an overview on this line of
work we refer to [9].
The approach in [1] was to work directly with graphs and their graphon limits, with the

aim to provide a proof of concept that diffusion-like graphon-valued processes can be built
as well. In [1], a natural class of graphon-valued processes was constructed that arose from
population genetics. The construction considered finite populations where individuals carry
one of finitely many genetic types and change type according to Fisher-Wright resampling.
At any time, each pair of individuals is linked by an edge with a probability that is given by
a type-connection matrix, whose entries depend on the current types of the two individuals
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and on the current empirical type distribution of the entire population via a fitness function.
It was shown that, in the large-population-size limit and with an appropriate scaling of
time, the evolution of the associated adjacency matrix converges to a random process in the
space of graphons, driven by the type-connection matrix and the underlying Fisher-Wright
diffusion on the multi-type simplex. In the limit as the number of types tends to infinity, the
limiting process is driven by the type-connection kernel and the underlying Fleming-Viot
diffusion.

1.2. Motivation. The goal of the present paper is to study a class of dense graph-valued
stochastic processes where the edges turn on and off in a dependent manner. In this class,
each vertex is assigned a type that changes randomly over time, and fluctuations in the
types of the vertices determine how the edges interact. Specifically, the edges in the random
graph at time t are independent given the paths of the types of all vertices up to time t.
Collectively, these paths are called the driving process. Our results generalise those of [1] in
a number of directions:

(i) We consider a general driving process and edge-switching dynamics, whereas [1]
restricts attention to a specific driving process (the multi-type Moran model) and to
a specific edge-switching dynamics.

(ii) We establish stochastic process convergence in the space of pW , d˝q-valued càdlàg
paths, whereas [1] works in the space of pW̃ , δ˝q-valued Skorokhod paths. (For the
definition of these two spaces, see Section 2.1 below.)

(iii) We establish sample-path large deviations, whereas [1] restricts attention to diffusion
limits.

Our proofs rely on concentrations estimates, coupling arguments and continuous mapping.
Along the way several examples are presented. See [30] for an example involving a multi-
graphon setting built on top of the configuration model.
In [1] diffusion limits are established for the multi-type Moran model in order to derive

a diffusion limit for certain graphon-valued stochastic process in Dpr0, T s, pW̃ , δ˝qq. In the
present paper we retain a general framework, while establishing both sample-path large
deviation principles and convergence of stochastic processes. For reasons given in later,
we prove convergence in Dpr0, T s, pW , d˝qq. As in [1], we restrict attention to processes
that exhibit vertex-level fluctuations. In future work we will look at processes that exhibit
edge-level fluctuations.

1.3. Outline. In Section 2 we recall basic LDPs for graphons and present three LDPs for
what we call inhomogeneous random graphs with type dependence (IRGwTPs) subject to
a number of assumptions. In Section 3 we look at graph-valued processes and present a
sample-path LDP in graphon space subject to a number of assumptions. We illustrate our
results via a running example, and also derive convergence of the graph-valued process to
a graphon process. In Section 4 we describe various applications and possible extensions.
Section 5 contains the proofs of the various LDPs and convergence results. Appendix A
identifies the rate function in the LDP of the underlying driving process.
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2. Large deviations for static random graphs

In Section 2.1 we recall a few basic definitions. In Section 2.2 we introduce inhomogeneous
Erdős-Rényi random graphs and recall the large deviation principle for their associated
empirical graphons. In Section 2.3 we describe a generalisation of inhomogeneous Erdős-
Rényi random graphs, referred to as inhomogeneous random graphs with type dependence
(IRGwTP), which motivate the definition of the class of graph-valued stochastic processes
introduced in Section 3. In Section 2.4 we state a number of key assumptions that are needed
along the way. In Section 2.5 we establish the large deviation principle for the associated
empirical graphon processes under the assumption that the driving process satisfies the LDP.
The latter assumption is investigated in Appendix A.

2.1. Graphs and graphons. Let W be the space of functions h : r0, 1s2 Ñ r0, 1s such that
hpx, yq “ hpy, xq for all px, yq P r0, 1s2, formed after taking the quotient with respect to the
equivalence relation of almost everywhere equality. A finite simple graph G on n vertices
can be represented as a graphon hG P W by setting

hGpx, yq :“

#

1 if there is an edge between vertex rnxs and vertex rnys,

0 otherwise.
(2.1)

This object is referred to as an empirical graphon and has a block structure. The space of
graphons W is endowed with the cut distance

d˝ph1, h2q :“ sup
S,TĎr0,1s

ˇ

ˇ

ˇ

ˇ

ż

SˆT
dx dy rh1px, yq ´ h2px, yqs

ˇ

ˇ

ˇ

ˇ

, h1, h2 P W . (2.2) {cutdist}{cutdist}

The space pW , d˝q is not compact.
On W there is a natural equivalence relation, referred to as ‘„’. Letting M denote the

set of measure-preserving bijections σ : r0, 1s Ñ r0, 1s, we write h1 „ h2 when there exists a
σ P M such that h1px, yq “ h2pσpxq, σpyqq for all px, yq P r0, 1s2. This equivalence relation
induces the quotient space pW̃ , δ˝q, where δ˝ is the cut metric defined by

δ˝ph̃1, h̃2q :“ inf
σ1,σ2PM

d˝ph
σ1
1 , h

σ2
2 q, h̃1, h̃2 P W̃ . (2.3)

The space pW̃ , δ˝q is compact [26, Lemma 8].

2.2. Inhomogeneous Erdos–Renyi random graph. Let r P W be a reference graphon.
Fix n P N and consider a random graph pGn with vertex set rns :“ t1, . . . , nu, where the pair
of vertices i, j P rns, i ‰ j, is connected by an edge with probability rp in ,

j
nq, independently

of other pairs of vertices. Write Pn to denote the law of pGn. Use the same symbol to denote
the law on W induced by the map that associates the graph pGn with its graphon h pGn . Write
P̃n to denote the law of h̃ pGn , the equivalence class associated with h pGn .
The following theorem is an extension of the LDP for homogeneous Erdős-Rényi random

graphs in [12]. It was first stated in [18] under additional assumptions. These assumptions
were subsequently relaxed in [29], [5], [19]. The following theorem corresponds to [19,
Theorem 4.1].
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Theorem 2.1. The sequence of probability measures pP̃nqnPN satisfies the LDP on pW̃ , δ˝q

with rate
`

n
2

˘

and with rate function Ĩr, i.e.,

lim sup
nÑ8

1
`

n
2

˘ log P̃npCq ď ´ inf
h̃PC

Ĩrph̃q @ C Ď W̃ closed,

lim inf
nÑ8

1
`

n
2

˘ log P̃npOq ě ´ inf
h̃PO

Ĩrph̃q @ O Ď W̃ open,
(2.4)

where
Ĩrph̃q “ inf

σPM
Irph

σq, (2.5)

h is any representative of h̃, and

Irphq :“

ż

r0,12s
dx dy Rphpx, yq | rpx, yqq, (2.6)

with
Rpa | bq “ a log

a

b
` p1´ aq log

1´ a

1´ b
. (2.7)

2.3. Inhomogeneous random graphs with type dependence. Consider the following
generalisation of the inhomogeneous Erdős-Rényi random graph defined in Section 2.2.
Suppose that each vertex i P rns is assigned a (possibly random) type Xpnqi P r0, 1s. Denote
the empirical type measure by

µn “
1

n

n
ÿ

i“1

δ
X
pnq
i

(2.8)

and the empirical type distribution by

Fnpxq “
1

n

n
ÿ

i“1

IrX
pnq
i ď xs, (2.9)

where I is the indicator function. Let Mpr0, 1sq denote the space of measures on r0, 1s
endowed with the topology of weak convergence. Suppose that each edge ij is active with
probability HpXi, Xj , Fnq independently of all other edges given Fn, where H : r0, 1s2 ˆ

Mpr0, 1sq Ñ r0, 1s is symmetric in its first two inputs. We label the resulting sequence of
random graphs as tGnunPN, and refer to them as inhomogeneous random graphs with type
dependence (IRGwTP).
Observe that if

X
pnq
i “

i

n
@n P N, i P rns, Hpx, y, F q “ rpx, yq @x, y P r0, 1s, (2.10){eq:ERcon}{eq:ERcon}

then the IRGwTP is equivalent to the inhomogeneous Erdős-Rényi random graph defined in
Section 2.2. There is a further connection between IRGwTP and inhomogeneous Erdős-Rényi
random graphs. Let F̄ denote the right-continuous generalised inverse of a distribution
function F with support r0, 1s, which is defined in the usual way as

F̄npuq :“ inftx P r0, 1s : Fnpxq ą uu, u P r0, 1q. (2.11)

For F PMpr0, 1sq, define the induced reference graphon grF s P W by

grF spx, yq “ HpF̄ pxq, F̄ pyq, F q. (2.12){eqn:SRGd}{eqn:SRGd}
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Given the type distribution Fn, h̃
pGn has the same distribution as an inhomogeneous Erdős-

Rényi random graph with reference graphon grFns. In other words, we have

h̃
pGn | Fn

d
“ h̃Gn with r “ grFns. (2.13){ob:SS}{ob:SS}

This observation is central to the large deviation principle for IRGwTPs stated in Theorem
2.6 below.

2.4. Key assumptions. Before stating this theorem we make a number of assumptions.

Assumption 2.2. The sequence of type distributions pFnqnPN satisfies the LDP onMpr0, 1sq

with rate `pnq and with rate function K. ♦

Assumption 2.2 holds, for instance, when pXpnqi qnPN,iPrns are i.i.d. random variables with
distribution f , in which case `pnq “ n and Kpgq “ Hpg | fq, the relative entropy of g
with respect to f . Assumption 2.2 may also hold with `pnq ‰ n. For example, if p ě 0,
tY

pnq
ij unPN,iPrns,jPrnps are i.i.d. random variables and

X
pnq
i “

1

np

tnpu
ÿ

j“1

Y
pnq
ij , (2.14)

then `pnq “ n1`p and Kpgq “ rInsert.s. See [19, Example 2.5] for an example where
`pnq “ n2 and X

pnq
i , i P N, are dependent. When X

pnq
i , i P N, are fixed and µn Ñ µ in

Mpr0, 1sq, as in (2.10), then this can be viewed as satisfying Assumption 2.2 with `pnq “ 8.

Assumption 2.3. The function F ÞÑ grF s defined in (2.12) is a continuous mapping from
Mpr0, 1sq to pW , ‖¨‖L1q. ♦

Assumption (2.3) holds, for example, when Hpx, y, F q ” H˚px, yq (i.e., there is no de-
pendence on the type distribution) and H˚ : r0, 1s2 Ñ r0, 1s is a continuous function.
Assumption (2.3) also holds when, in addition, f : Mpr0, 1sq Ñ r0, 1s and h : r0, 1s2 Ñ r0, 1s

are continuous functions, and

Hpx, y;F q “ hpH˚px, yq, fpF qq @ rx, ys P r0, 1s2, F PMpr0, 1sq. (2.15)

In certain settings we require two further assumptions that are of a more technical nature.

Assumption 2.4. For all F PMpr0, 1sq the induced graphon grF s is away from the boundary,
i.e., there exists η ą 0 such that

η ď grF spx, yq ď 1´ η @ px, yq P r0, 1s2. (2.16)

♦

Assumption 2.5. The rate function K has a unique zero, labelled F ˚. ♦
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2.5. LDP for IRGwTPs. We are now ready to state our large deviation principle for
IRGwTPs.

Theorem 2.6. Subjects to Assumptions 2.2 and 2.3 the following hold:

(i) If `pnq “ o
``

n
2

˘˘

, then th̃ pGnu satisfies the LDP with rate `pnq and with rate function
I˚ph̃q “ Jph̃q.

(ii) If limnÑ8 `pnq{
`

n
2

˘

“ c and Assumption 2.4 holds as well, then th̃ pGnu satisfies the
LDP with rate

`

n
2

˘

and with rate function I˚ph̃q “ infgPW̃ rcJpg̃q ` Igph̃qs, where g is
any representative and g̃.

(iii) If
`

n
2

˘

“ op`pnqq and Assumptions 2.4 and 2.5 hold as well, then th̃ pGnu satisfies the
LDP with rate

`

n
2

˘

and with rate function I˚ph̃q “ IgrF˚sph̃q.

To understand where Theorem 2.6 comes from, think of simulating outcomes of h̃ pGn in
two steps:

‚ In Step 1 simulate types of the vertices, i.e., simulate the type distribution Fn.
‚ In Step 2 simulate the edges given Fn, i.e., simulate h̃ pGn given the induced reference
graphon grFns.

Due to Assumption 2.2, large fluctuations in Step 1 are governed by the LDP with rate `pnq
and with rate function Kp¨q, whereas due to (2.13) large fluctuations in Step 2 are governed
by the LDP with rate

`

n
2

˘

and with rate function IgrFns . Consequently, when `pnq “ o
``

n
2

˘˘

large fluctuations in h̃Gn are most likely to be caused by a rare event in Step 1, whereas
when

`

n
2

˘

“ op`pnqq large fluctuations in h̃Gn are most likely to be caused by a rare event
in Step 2. When `pnq —

`

n
2

˘

large fluctuations in h̃Gn are most likely to be caused by a
combination of rare events in Steps 1 and 2.
When `pnq “ o

``

n
2

˘˘

we say that the IRGwTP exhibits vertex-level fluctuations, whereas
when

`

n
2

˘

“ op`pnqq we say that it exhibits edge-level fluctuations.
The type-dependent inhomogeneous random graphs introduced in this section are of

interest in their own right. However, our primary motivation for introducing IRGwTP
is that it has a natural stochastic process generalisation. The rough idea behind this
generalisation is that at each time the distribution of the process corresponds to a IRGwTP.
We will focus primarily on processes that exhibit vertex-level fluctuations.

3. Graphon-valued processes

Section 3.1 introduces the graph-valued process of interest. Section 3.2 describes an
illustrative example. Section 3.3 presents the sample-path LDP for the graph-valued process
under the assumption that the driving process satisfies the LDP. The latter assumption is
investigated in Appendix A.

3.1. The model. Let pGnptqqtPr0,T s denote our graph-valued process. We suppose that each
vertex i P rns has a type Xpnqi ptq that may fluctuate randomly over time. Let pµnptqqtPr0,T s
denote the empirical type measure process, which is characterised by

µnptq “
1

n

n
ÿ

i“1

δXn
i ptq

, (3.1)
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and let pFnpt; ¨qqtPr0,T s denote the empirical type distribution process, which is characterised
by

Fnpt;xq “
1

n

n
ÿ

i“1

IrXiptq ď xs, @x P r0, 1s. (3.2)

The process pµnptqqtPr0,T s is a random variable onDpr0, T s,Mpr0, 1sqq, the space ofMpr0, 1sq-
valued Cadlag paths.bWe suppose that at any time t edge ij is active with probability

Hpt;Xiptq, Xjptq, pFnpt; ¨qqtPr0,T sq, (3.3)

independently of all other edges given t, Xiptq, Xjptq, and pFnpt; ¨qqtPr0,T s, where

H : r0, T s ˆ r0, 1s2 ˆDpr0, T s,Mpr0, 1sqq ÞÑ r0, 1s. (3.4)

The function H gives rise to the induced reference graphon process grF s, which, for
F P Dpr0, T s,Mpr0, 1sqq, is characterised by

grF spt;x, yq “ Hpt; F̄ pt;xq, F̄ pt; yq, pF pt; ¨qtPr0,T sqq. (3.5) {eq:Gtdef}{eq:Gtdef}

Observe that, for any t P r0, T s, given the outcome of the empirical type distribution process
Fn, the distribution of h̃Gnptq corresponds to that of an inhomogeneous Erdős-Rényi random
graph with reference graphon grFnspt; ¨, ¨q. In other words, for any t P r0, T s,

hGnptq|Fn
d
“ h

pGn with r “ grFnspt; ¨q, (3.6) {Ob:spIRG}{Ob:spIRG}

where pGn is the inhomogeneous Erdős-Rényi random graph defined in Section 2.2. We make
the following assumption on the function F ÞÑ grF s, which due to (3.5) is an assumption on
H.

Assumption 3.1. The map F ÞÑ grF s from Dpr0, T s,Mpr0, 1sqq to Dpr0, T s, pW , ‖¨‖L1qq is
continuous. ♦

3.2. An illustrative example. Suppose that pGnptqqtPr0,T s is characterised by the following
dynamics:

‚ Gnp0q is the empty graph.
‚ Each vertex is assigned an independent rate-γ Poisson clock, and each time the clock
attached to vertex v rings all the edges that are adjacent to v become inactive.

‚ If edge ij is inactive, then it becomes active at rate λ.

We first describe the driving process. Let tτkpvqukPN denote the sequence of times at which
the Poisson clock attached to vertex v rings, and let

Yvptq :“ t´max
k
tτkpvq : τkpiq ď tu (3.7)

denote the time since the clock last rung. The value of Yvptq can be thought of as the age of
vertex v at time t: each time the clock associated with v rings, it ‘dies’ and all its adjacent
edges are lost. Recalling that we assumed that types take values in r0, 1s, we let

Xvptq :“ F exppYiptqq “ 1´ e´γYiptq (3.8)

denote the type of vertex v at time t, where F exp can be identified as the distribution function
of an exponential random variable with rate γ.
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The function Hpt, v, u, F q can also be identified. The probability that there is an active
edge between vertices of ages ū and v̄ is 1 ´ expt´pū ^ v̄qu. Letting u “ F exppūq and
v “ F exppv̄q, we obtain

Hpt, u, v, F q “ 1´ p1´ u^ vqλ{γ . (3.9)

Because Hpt, u, v, F q is a continuous function of u and v, and is independent of t and F , it
is simple to verify that Assumption 3.1 holds. A more involved example is given in Section
4.1.

3.3. Sample-path large deviations. Similarly as in Section 2.5, we assume that the
driving process satisfies the LDP (which for the illustrative example is established in Lemma
A.1).

Assumption 3.2. tFnunPN satisfies the LDP onDpr0, T s,Mpr0, 1sqq with rate `pnq “ op
`

n
2

˘

q

and with rate function K. ♦

To establish the sample-path LDP for the graphon-valued process, we need to: (I) establish
the LDP in the pointwise topology; (II) strengthen the topology by establishing exponential
tightness. Step (I) is settled by the following result.

Proposition 3.3. If Assumptions 3.1 and 3.2 hold, then tph̃ pGnptqqtě0unPN satisfies the LDP
in the pointwise topology with rate `pnq and with rate function Jph̃q.

Note that Proposition 3.3 does not refer to any edge-switching dynamics. Specifically, if
two process tGnunPN and tG˚nunPN have a common sequence of types tpXiptqqtě0uiPrns and a
common edge connection function H, then the marginal distributions are equivalent, i.e.,

h̃Gnptq d
“ h̃G

˚
nptq, for any t P r0, T s. (3.10)

However, this does not necessarily mean that the the joint distributions are equivalent, i.e.,
we may have

ph̃
pGnptqqtPr0,T s

d
‰ ph̃

pG˚nptqqtěr0,T s, (3.11)

as these joint distributions depend on the specific edge-switching dynamics. Nonetheless,
Proposition 3.3 implies that both t pGnunPN and t pG˚nunPN satisfy equivalent LDPs in the
pointwise topology, i.e., the rate function depends only on the marginal distributions of the
process and not on the specific edge-switching dynamics. In Sections 4.1 and 4.2 we provide
examples of processes with equivalent marginals and different edge-switching dynamics.
The specific edge-switching dynamics do need to be taken into consideration when we

want to strengthen the topology of the LDP in Proposition 3.3 by establishing exponential
tightness. We next provide a condition that can be used to verify that th̃Gnuně0 are
exponentially tight. Let

E
pnq
ij ptq “

#

1, if edge ij is active at time t,

0, otherwise,
(3.12)

and define
Cpnqpt, δq “

ÿ

1ďiăjďn

sup
tďuďvďt`δ

|E
pnq
ij puq ´ E

pnq
ij pvq|. (3.13)
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In other words, Cnpt, δq is the number of edges that change (i.e., go from active to inactive
or from inactive to active) at some time between t and t` δ.

Proposition 3.4. If, for all t P r0, T s and ε ą 0,

lim
δÓ0

lim sup
nÑ8

1

`pnq
logP

ˆ

Cnpt, δq ą ε

ˆ

n

2

˙˙

“ ´8, (3.14) {eq:Tcon}{eq:Tcon}

then th̃Gnuně0 is exponentially tight.

Combining the above results, we obtain the following.

Theorem 3.5. If the conditions of Propositions 3.3 and 3.4 hold, then the sequence of
processes th̃ pGnunPN satisfies the LDP on Dpr0, T s, W̃ q with rate `pnq and with rate function
J .

In view of Lemma A.1, the conditions of Theorem 3.5 can be readily verified for the
illustrative example. In Theorem 3.10 we establish a sample-path LDP for a class of
processes that includes the illustrative example.

3.4. Stochastic process convergence. Let ñ denote convergence in distribution, and
f.d.d.
ñ denote convergence of the finite-dimensional distributions. We assume that the empirical
type distribution satisfies a stochastic process limit.

Assumption 3.6. Suppose that Fn ñ F on DpMpr0, 1sq, r0, T sq. ♦

We establish the stochastic process limit of phGnptqqtPr0,T s on DppW , d˝q, r0, T sq, i.e., we no
longer take the quotient with respect to the equivalence relation „. To establish a stochastic
process limit in this finer topology, we need to ensure that the labels of the vertices update
dynamically.

Assumption 3.7. At any time t P r0, 1s the labels of the vertices are such that

X1ptq ď X2ptq ď ¨ ¨ ¨ ď Xnptq. (3.15)

♦

Given the dynamic labelling above and the illustrative example, the motivation behind es-
tablishing our stochastic process limits onDppW , d˝q, r0, T sq rather than onDppW̃ , δ˝q, r0, T sq

is clear: Are the older vertices more connected than the younger vertices? If we establish a
limit on DppW , d˝q, r0, T sq, then we have a definitive answer, whereas if we establish a limit
in DppW̃ , δ˝q, r0, T sq, then we do not gain any insight.

Proposition 3.8. If Assumptions 3.1, 3.6 and 3.7 hold, then hGn
f.d.d.
ñ rrF s.

Strengthening the topology to obtain convergence in distribution on DppW , d˝q, r0, T sq is
more difficult than in Section 3.3. This is because, unlike pW̃ , δ˝q, the space pW , d˝q is not
Polish, and hence we cannot directly apply established sufficient conditions for tightness, such
as those stated in [20, Sections 3.6–3.9]. Nonetheless, we are able to establish convergence
directly by using [20, Corollary 3.3].
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Assumption 3.9. For any ε ą 0,

lim
δÓ0

lim sup
nÑ8

sup
tPr0,T s

T

δ
P
ˆ

Cnpt, δq ą ε

ˆ

n

2

˙˙

“ 0. (3.16)

Theorem 3.10. Subject to Assumptions 3.1, 3.6–3.7, 3.9, hGn ñ grF s in DppW , d˝q, r0, T sq.

In view of Lemma A.1, the conditions of Theorem 3.10 can again be readily verified for
the illustrative example. We establish a more general result in Proposition 4.2.

4. Applications and extensions

In this section we consider a class of processes that generalise the illustrative example. We
use this class of processes to make three points that we believe apply more generally:

(I) An additional layer of dependence between the edges can be introduced that cannot
be captured by the types of the vertices (so that (3.6) no longer holds) but still
allows to establish limiting results in the spirit of Section 3. Roughly speaking,
this is the case when the additional layer of dependence between the edges is of
mean-field type (see Section 4.1).

(II) The specific edge-switching dynamics rarely affects the limiting path of the process
(see Section 4.2).

(III) The dependence between edges in inhomogeneous random graphs with type depen-
dence leads to new behaviour in the corresponding variational problems, even in
relatively simple settings (see Section 4.3).

4.1. Beyond conditional independence of edges.

4.1.1. Model and LDP. Suppose that pGnptqqtPr0,T s is characterised by the following dynam-
ics:

‚ Gnp0q is the empty graph.
‚ Each vertex is assigned an independent rate-λ Poisson clock, and each time the clock
associated with vertex v rings all the edges that are adjacent to v become inactive.

‚ If edge ij is inactive, then it becomes active at rate λpt,Xiptq, Xjptq, Fnpt; ¨q, h̃
Gnptqq.

‚ If edge ij is active, then it becomes inactive at rate µpt,Xiptq, Xjptq, Fnpt; ¨q, h̃
Gnptqq.

Here, we assume that λ and µ are Lipshitz-continuous functions on r0, T sˆr0, 1s2ˆpr0, 1sqˆ
W̃ .
If λp¨q and µp¨q do not depend on the current state of the unlabelled graph (h̃Gnptq), i.e., if

λpt, u, v, F, h̃q ” λpt, u, v, F q, µpt, u, v, F, h̃q ” µpt, u, v, F q, (4.1){eq:FF}{eq:FF}

then the process fits into the framework of Section 3, otherwise it does not. To understand
why, we compute the probability that edge ij is active under (4.1) at time t given Xiptq “ xi,
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Xjptq “ xj and Fn “ F . We have

Hpt;xi, xj , F q “

ż t

t´xi^xj

ds λps, xi ´ t` s, xj ´ t` s, F pt; ¨qq

ˆ exp

"

´

ż t

s
da rµps, xi ´ t` a, xj ´ t` a, F pt; ¨qq ` λps, xi ´ t` a, xj ´ t` a, F pt; ¨qqs

*

.

(4.2){eq:HFF}{eq:HFF}
It is also easy to see that two edges ij and k` are independent given t, Xiptq, Xjptq, Xkptq,
X`ptq and Fn “ F , and hence the process indeed falls into the framework of Section 3. To
recover the illustrative example, take λpt, u, v, F q “ λ P R` and µpt, u, v, F q “ 0.
An example of a choice for λp¨q that does depend on the unlabelled graph (h̃Gnptq) is

λpt, u, v, F, h̃q “ 1` spG, h̃q, (4.3) {eq:lex}{eq:lex}

where G is a simple graph (e.g. a triangle) and spG, h̃q denotes the homomorphism density
of G in h̃. Note that, by the counting lemma (see, for instance, [10, Proposition 2.2]), this
particular choice of λp¨q is Lipshitz-continuous. In this case, the two edges ij and k` are
not independent given t, Xiptq, Xjptq, Xkptq, X`ptq and Fn “ F . Indeed, if edge ij is active,
then it may participate in additional copies of G, which means that edge k` is more likely
to be active. This dependence is inherent to the model, in that it cannot be removed by
changing the definition of the types Xiptq.
The next theorem demonstrates that, despite the above observation, we can still establish

a sample-path LDP for the process. To show why, we define a mapping F ÞÑ gpF q via a
differential equation. We first state this differential equation and then explain the intuition
behind it. Let gpF qp0;x, yq “ 0 for px, yq P r0, 1s2, and

gpF qpt` dt;x, yq “ gpF qpt;x1, y1q ` dtλpt, F̄ pt;x1q, F̄ pt; y1q, F pt; ¨q, g̃pF qqp1´ gpF qpt;x1, y1qq

´ µpt, F̄ pt;x1q, F̄ pt; y1q, F pt; ¨q, g̃pF qqgpF qpt;x1, y1q,

(4.4) {eq:GFdef}{eq:GFdef}

where u1 “ F pt; F̄ pt` dt;uq ´ dtq for all u P r0, 1s. Note that, under (4.1),

gpF qpt;x, yq “ Hpt, F̄ pt, xq, F̄ pt, yq, F q (4.5)

with H given in (4.2), and hence the more complicated expression in (4.4) is only required
when (4.1) does not hold. The differential equation in (4.4) can be understood as follows.
Consider the process hGn under Assumption 3.7, so that the vertices are labelled in order
of increasing age. Roughly speaking, given Fn “ F , gpF qpt;x, yq can be thought of as
the probability that edge prnxs, rnysq is active. Indeed, as time t ´ dt these vertices had
the labels prnx1s, rny1sq, respectively (with x1, y1 given below (4.4)). The first term in the
right-hand side of (4.4), gpF qpt;x1, y1q, is the probability that the edge was active at time
t ´ dt, the second term accounts for the event that the edge turned on during the time
interval rt´ dt, ts, while the third term accounts for the event that it turned off during the
time interval rt´ dt, ts.
For A Ď R` (such that if A “ ra, bs then A` c “ ra` c, b` cs), let

D1µtpAq “ lim
hÑ0

µt`hpA` hq ´ µtpAq

h
. (4.6)
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Theorem 4.1. The sequence of processes tph̃Gnptqqtě0unPN satisfies the LDP with rate n
and with rate function

Jph̃q “ inf
FPDpr0,tsˆMpr0,1sqq : g̃pF q“h̃

KpF q, (4.7){eq:RFex}{eq:RFex}

where

Kpµq “

ż T

0
dt

ż 8

0
rγµipdxq ´D1µtpdxqs `

ż T

0
dt

ż 8

0
D1µtpdxq log

ˆ

D1µtpdxq

µipdxqftp0q

˙

`

ż T

0
dtftp0q logpftp0q{γq

(4.8){eq:rateex1alt}{eq:rateex1alt}

with ftp0q :“ limhÑ0 µtpr0, hsq{h.

Proposition 4.2. [To be written: A functional law of large numbers in the Skoro-
hod space DppW , d˝q, r0, T sq. The proof uses the same arguments as in the proof
of Theorem 4.1.

Theorem 4.1 is interesting because it shows that we can add a ‘mean-field type’ interaction
between the edges and still obtain equivalent results.

4.1.2. Numerical illustration. [To be added.]

4.2. Different edge-switching dynamics, equivalent sample-path LDP. Next sup-
pose that the process h̃Gnp¨q has the same underlying driving process, but different edge-
switching dynamics. In particular, consider the edge switching dynamics introduced in [1].
Let pUijq1ďiăjďn be a sequence of independent uniform variables on r0, 1s, and suppose that
edge ij is active if Uij ď Hpt;Xiptq, Xjptq, Fnpt; qq, where H is given by (4.1). [Check if
this can be generalised.] Note that this process is not Markov. Nonetheless, by Propo-
sition 3.3 we immediately have that, in the pointwise topology, the sequence of processes
satisfies the same LDP as the processes described in Section 4.2. To strengthen the topology
it remains to verify establish exponential tightness. This can be done by using Proposition
3.4, which leads to the following result. [Proof still needs to be done.]

Proposition 4.3. The sequence of processes tph̃ pGnptqqtě0unPN satisfies the LDP with rate n
and with rate function (4.7).

4.3. The most likely path to an unusually small edge density. Consider the simple
setting with µpt, u, v, F, h̃q “ 0, λpt, u, v, F, h̃q ” λ P R`, and λ “ γ. Observe that in this
case

Hpu, v, F q “ u^ v. (4.9){eq:43S}{eq:43S}

Our goal is to find the most likely path the process takes to a prescribed edge density e˚

at time T . We do this in two stages: we first compute the most likely state of the process
at time T given this edge density, and afterwards use this computation to obtain the most
likely trajectory of the process. Note that, given (4.9), the results in this section apply to
the models introduced in Sections 4.1 and 4.2 (with the above simplification).
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4.3.1. Step 1: most likely state of the process at time T . Let Q denote the distribution of
Xvptq. Note that

Qpdxq “

$

’

’

&

’

’

%

dx, if x ă F exppT q,

1´ F exppT q, if x “ F exppT q,

0, otherwise.

(4.10){eq:Qex}{eq:Qex}

However, for the moment we will assume that Q is a general measure on r0, 1s. We first
consider the event that Gn has an unusually small edge density e˚ at time T . By Theorem
2.6, the corresponding variational problem is

minimize
ş1
0 log

´

dP
dQ

¯

dP

subject to 2
ş1
0

şy
0 xP pdxqP pdyq ď e˚

over P PMpr0, 1sq.

(4.11) {eq:OP}{eq:OP}

Proposition 4.4. The feasible region of the variational problem described in (4.11) is
convex.

Because the objective function in (4.11) is strictly convex, Proposition 4.4 implies that the
variational problem has a unique global minimum. Consequently, there are a number of
numerical methods that we can apply to obtain this minimum.
If we consider the probability that Gn has an unusually high edge density at time T , then

we must solve the same variational problem as described in (4.11) with “ď” replaced by
“ě”. Now the feasible region is no longer convex. Consequently, as we illustrate with a
numerical example, the corresponding variational problem may have multiple local maxima
and multiple local minima.
Let

Qpxq “

$

’

’

&

’

’

%

4
5 ´

1
1000 , if x “ 0,

1
5 , if x “ 1

10 ,
1

1000 , if x “ 1.

(4.12) {eq:NumQ}{eq:NumQ}

In Figure 1 we plot the rate (the value of the objective function evaluated at the maxima)
against the edge density e˚. When e˚ “ 0.085 there are two distinct optimal solutions
corresponding to

P ˚1 pxq “

$

’

’

&

’

’

%

0.0782, if x “ 0,

0.9159, if x “ 1
10 ,

0.0059, if x “ 1,

P ˚2 pxq “

$

’

’

&

’

’

%

0.3728, if x “ 0,

0.4020, if x “ 1
10 ,

0.2252, if x “ 1.

For e˚ « 0.085, solutions near P ˚1 and P ˚2 are local minima. These local minima are
illustrated by the dotted curve in Figure 1: values above 0.085 correspond to solutions
that are close to P ˚1 and values below 0.085 correspond to solutions that are close to P ˚2 .
Observe that we can restrict our search of an optimal measure P to measures that are
absolutely continuous with respect to Q. For Q given by (4.12), these measures live on the
2-dimensional simplex. Consequently, there can be at most two local minima. If Q has a
continuous component (as it does in (4.10)), then there is, in principle, no bound on the
number of local minima.
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Figure 1.

4.3.2. Step 2: Computing the optimal path. [Not sure whether this is worth doing.
The interesting part is Step 1.]

5. Proofs

Sections 5.1–5.3 contain the proofs of the theorems in Sections 2–4.

5.1. Proofs of the results in Section 2. We prove Theorem 2.6 via a sequence of lemmas.
Recall that we use pGn to denote an inhomogeneous Erdős–Rényi random graph (IRG) and
Gn to denote a inhomogeneous random graph with type dependence (IRGwTP).

5.1.1. Inhomogeneous Erdős–Rényi random graphs. The first lemma is similar to [18] and
[19, Theorem 4.1], the primary difference being that in these papers there is a single reference
graphon r, i.e., rn “ r for all n ě 0. The generalisation comes at the cost of the addition of
Assumption 2.4 in the lower bound (which is not made in [19, Theorem 4.1], but is in [18]).

Lemma 5.1. Let rn denote the reference graphon for pGn and suppose that rn Ñ r in L1.
Then

lim sup
nÑ8

1
`

n
2

˘ logPph̃ pGn P Cq ď ´ inf
h̃PC

Ĩrph̃q, @ C closed, (5.1)

and, subject to Assumption 2.4,

lim inf
nÑ8

1
`

n
2

˘ logPph̃ pGn P Oq ě ´ inf
h̃PO

Ĩrph̃q, @O open. (5.2)

Proof. The upper bound follows from the same arguments as used in [19, Theorem 4.1] (by
noting that the specific requirement that rn “ r is not used there). The lower bound again
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follows from similar arguments. However, now instead of applying Jensen’s inequality we
apply the dominated convergence theorem, which is possible because of Assumption 2.4. �

The previous lemma can be used to obtain the following concentration type result for
inhomogeneous Erdős–Rényi random graphs.

Lemma 5.2. Let pGn be an IRG with reference graphon rn P Wn. If ‖rn ´ r‖L1 Ñ 0, then,
for any r P W ,

lim sup
nÑ8

1
`

n
2

˘ logPph̃ pGn R B˝pr̃, εqq ď ´ε
2. (5.3)

Proof. Suppose that h̃ R B˝pr, εq, and let h be any member of the equivalence class h̃. Using
a Taylor expansion in the first step and Jensen’s inequality in the second step, we have

Irphq “
1

2

ż

r0,1s2
dx dy

„

hpx, yq log

ˆ

hpx, yq

rpx, yq

˙

` p1´ hpx, yqq log

ˆ

1´ gnpx, yq

1´ rpx, yq

˙

ě

ż

r0,1s2
dx dy phpx, yq ´ rpx, yqq2 ě ‖h´ r‖2L1

ě d˝ph, rq
2 ě ε2.

(5.4)

Since B˝pr̃, εq is open, its complement is closed, which implies that we can apply the upper
bound in Lemma 5.1, from which the result follows. �

5.1.2. Inhomogeneous random graphs with type dependence. We next turn our attention to
inhomogeneous random graphs with type dependence Gn. We first use the previous lemma
to show that Gn is close to the induced reference graphon grFns with high probability.

Lemma 5.3. If Assumption 2.3 holds, then

lim sup
nÑ8

1
`

n
2

˘ logPph̃Gn R B̃˝pg̃
rFns, εqq ď ´ε2. (5.5) {eq:LemEF}{eq:LemEF}

Proof. Suppose that Assumption 2.3 holds. We proceed by contradiction. Suppose that (5.5)
does not hold. Then there necessarily exist sequences pnkqkPN Ď N and pF ‹nk

qkPN ĂMpr0, 1sq

such that

lim inf
kÑ8

1
`

nk
2

˘ logP
´

h̃Gnk R B̃˝pg̃
rF ‹nk

s, εq | Fnk
“ F ‹nk

¯

ą ´ε2, (5.6)

where, for each k P N, F ‹nk
is an empirical distribution function with nk data points. Since

Mpr0, T sq is compact, there exists a convergent subsequence of pF ‹nk
qkPN. Consequently,

w.l.o.g. we may assume that there exists F ‹ such that F ‹nk
Ñ F ‹ in Mpr0, T sq as k Ñ 8.

Under Assumption 2.3 we therefore have

‖rrF
‹
nk
s
´ rrF

‹s‖L1 Ñ 0, as k Ñ8. (5.7)

Recalling that, due to 2.13 (i.e., conditional on the induced reference graphon the graph has
the distribution of an inhomogeneous random graph), we can apply Lemma 5.2 to obtain a
contradiction. �

The next lemma establishes a large deviation principle for the sequence of induced reference
graphons grFns.
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Lemma 5.4. Subject to Assumptions 2.2 and 2.3, tg̃rFnsunPN satisfies the LDP on pW̃ , δ˝q

with rate `pnq and with rate function

Jph̃q “ inf
FPMpr0,1sq : g̃rF s“h̃

KpF q. (5.8) {RateLDPT}{RateLDPT}

Proof. For any g, f P W , ‖f ´ g‖L1 ě δ˝pg̃, f̃q. Thus, under Assumption 2.2, the map
F ÞÑ g̃rF s is continuous. The result therefore follows by using Assumption 2.3 and the
contraction principle [24, Theorem III.20]. �

Proof of Theorem 2.6: We prove (i), (ii), (iii) separately.

(i) lower bound: Let O be an open subset of W̃ , and let Op´εq denote the largest open set
whose ε-neighbourhood is contained in O. We have

Pph̃Gn P Oq ě Ppg̃rFns P Op´εqqp1´ Ppδ˝ph̃Gn , g̃rFnsq ą εqq. (5.9){eqn:LBi}{eqn:LBi}

Applying Lemmas 5.4 and 5.3 to the first and second terms on the right-hand-side of (5.9),
respectively, we obtain

lim sup
nÑ8

1

`pnq
logPph̃Gn P Oq ě ´ lim

εÓ0
inf

h̃POp´εq
Jph̃q “ ´ inf

h̃PO
Jph̃q. (5.10)

(i) upper bound: Let C be a closed subset of W̃ , and let Cp`εq denote the largest closed set
that contains the ε-neighbourhoods of all the points in C. We have

Pph̃Gn P Cq ě Ppg̃rFns P Cp`εqq ` Ppδ˝ph̃Gn , g̃rFnsq ą εq. (5.11){eqn:UBi}{eqn:UBi}

Again applying Lemmas 5.4 and 5.3 to the first and second terms on the right-hand-side of
(5.9), respectively, we obtain

lim sup
nÑ8

1

`pnq
logPph̃Gn P Cq ď ´ lim

εÓ0
inf

h̃PCp`εq
Jph̃q “ ´ inf

h̃PC
Jph̃q, (5.12)

where in the first step we use the fact that `pnq “ op
`

n
2

˘

q.

(ii) lower bound: For r P W , let

F pr, εq “ tF PMpr0, 1sq : ‖grF s ´ r‖L1 ă εqu, (5.13)

and observe that, by Assumption 2.3, the set F pr, εq is measurable. Under Assumption 2.4
we therefore have

lim inf
nÑ8

1
`

n
2

˘ logPph̃Gn P Oq

ě lim
εÓ0

lim inf
nÑ8

1
`

n
2

˘

„

logPpFn P F pr, εqq ` logPph̃ pGn P O|Fn P F pr, εqq


ě ´ lim
εÓ0

«

cKpF pr, εqq ` sup
FPF pr,εq

inf
h̃PO

IrrF sph̃q

ff

“ ´rcJpr̃q ` inf
h̃PO

Irph̃qs.

(5.14)
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In the second step we use the fact that, since Mpr0, T sq is compact, for any sequence pFnqnPN
in F pr, εq there exists a convergent subsequence, which allows us to apply Lemma 5.1. In
the final step we use the lower semi-continuity of K and the assumption that F ÞÑ rrF s is a
continuous mapping from Mpr0, 1sq to pW , L1q, in combination with the fact that, under
Assumption 2.4, if ‖rn ´ r‖L1 Ñ 0, then Irnph̃q Ñ Irph̃q uniformly over h P W as n Ñ 8

(see [18, Lemma 2.3]). Because these arguments hold for any r P W we have

lim inf
nÑ8

1
`

n
2

˘ logPph̃Gn P Oq ě ´ inf
r̃PW̃

rcJpr̃q` inf
h̃PO

Irph̃qs “ ´ inf
h̃PO
t inf
r̃PW̃

rcJpr̃q`Irph̃qsu. (5.15)

(ii) upper bound: Let Lp¨, ¨q be the Lévy metric, let BLpF, εq “ tH PMpr0, 1sq : LpH,F q ď

εu, and recall that Lp¨, ¨q metrises the weak topology. Since Mpr0, 1sq is a compact space, for
any ε ą 0 we can construct a finite set F rεs with the property that for any H PMpr0, 1sq

there exists F P F rεs such that LpF,Hq ď ε. We therefore have

lim sup
nÑ8

1
`

n
2

˘ logPph̃ pGn P Cq

ď lim
εÓ0

lim sup
nÑ8

1
`

n
2

˘ log

„

ÿ

FPF rεs

PpFn P BLpF, εqqPph̃
pGn P C | Fn P BLpF, εqq



ď ´ lim
εÓ0

min
FPF rεs

rcKpBLpF, εqq ` inf
F ‹PBLpF,εq

inf
h̃PC

IgrF‹sph̃qs.

ď ´ lim
εÑ0

min
FPMpr0,1sq

rcKpBLpF, εqq ` inf
F ‹PBLpF,εq

inf
h̃PC

IgrF‹sph̃qs

“ ´ min
FPMpr0,1sq

rcKpF q ` inf
h̃PC

ĨrF sr ph̃qs

“ inf
h̃PC
t min
FPMpr0,T sq

rcKpF q ` ĨrF sr ph̃qsu.

(5.16)

In the second step we apply Assumption 2.2, Lemma 5.1 and Laplace’s method, using a
similar justification as in the lower bound. In the fourth step we use lower semi-continuity
of K (Assumption 2.2) and apply [18, Lemma 2.3]).

(iii): In this case we can apply similar (albeit simpler) arguments as in case (i). �

5.2. Proofs of the results in Section 3.

5.2.1. Large deviations. The next lemma will be used to prove Proposition 3.3.

Lemma 5.5. Subject to Assumption 3.1, H̃p¨; ¨, ¨, Fnq satisfies the LDP with rate `pnq and
with rate function

Jph̃q “ inf
FPMˆr0,T s:H̃p¨;¨,¨,F q“h̃

KpF q. (5.17) {eq:Jdef}{eq:Jdef}

Proof. The claim follows from the contraction principle (cf. Lemma 5.4). �

Proof of Proposition 3.3. To establish a multi-point LDP, we can follow similar arguments
as in the proof of Theorem 2.6 (i). For example, to establish the lower bound, pick
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0 ď t1 ď t2 ď ¨ ¨ ¨ ď tk ď T , let Oi be an open subset of W̃ , and let Op´εqi be as in the proof
of Theorem 2.6. We have

lim inf
nÑ8

1

`pnq
logP

´

h̃Gnptiq P Oi, @i “ 1, . . . , k
¯

ě lim
εÓ0

lim inf
nÑ8

1

`pnq
log

„

P
´

g̃rFnsptiq P Op´εqi , @i “ 1, . . . , k
¯

`

ˆ

1´
k
ÿ

i“1

Ppδ˝ph̃Gnptiq, g̃rFnsptiqq ą ε

˙

ě inf
h̃:h̃ptiqPOi,@i“1,...,k

Jph̃q,

(5.18)

where Jph̃q is given by (5.17), and we use a similar justification as in the lower bound of
Theorem 2.6 (i) (applying Lemma 5.5 in place of Lemma 5.4). The upper bound is again
similar and is therefore omitted.vWith the multi-point LDP established, we can apply the
Dawson-Gärtner ([17, Theorem 4.6.1]) projective limit theorem to establish an LDP in the
pointwise topology, and [17, Lemma 4.6.5] to obtain the specific form of the rate function in
Proposition 3.3. �

Proof of Proposition 3.4. For δ ą 0 and T ą 0, define the modulus of continuity in
Dpr0, T s, W̃ q by

w1ph̃Gn , δ, T q “ inf
ti

max
i

sup
s,tPrti,ti`1q

δ˝

´

h̃Gnpsq, h̃Gnptq
¯

, (5.19)

where the infimum is over ttiu satisfying

0 “ t0 ă t1 ă ¨ ¨ ¨ ă tm´1 ă T ď tm (5.20)

and min1ďiďnpti´ti´1q ě δ. By [21, Theorem 4.1] (and the compactness of W̃ ), the sequence
of processes tphGnptqqtPr0,T sunPN are exponentially tight if

lim
δÓ0

lim sup
nÑ8

1

`pnq
logP

´

w1ph̃Gn , δ, T q ą ε
¯

“ ´8 (5.21){eq:Tgoal}{eq:Tgoal}

for all ε ą 0. Suppose that (3.14) holds. We will show that this entails that (5.21) holds
with ti “ iδ for i P t0, . . . , rT {δsu. Indeed, observe that

sup
s,tPrti,ti`1q

δ˝

´

h̃Gnpsq, h̃Gnptq
¯

ď sup
s,tPrti,ti`1q

‖hGnpsq ´ hGnptq‖L1 ď

ˆ

n

2

˙´1

Cnpti, δq. (5.22)

Consequently,

P
´

w1ph̃Gn , δ, T q ą ε
¯

ď rT {δs sup
tPr0,T s

P
ˆ

Cnpt, δq ą ε

ˆ

n

2

˙˙

. (5.23){eq:wdid}{eq:wdid}
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Hence

lim
δÓ0

lim sup
nÑ8

1

`pnq
logP

´

w1ph̃Gn , δ, T q ą ε
¯

ď lim
δÓ0

lim sup
nÑ8

«

1

`pnq
logrT {δs`

1

`pnq
log

˜

sup
tPr0,T s

P
ˆ

Cnpt, δq ą ε

ˆ

n

2

˙˙

¸ff

“ ´8,

(5.24)

where in the final step we apply (3.14) and use the fact that `pnq Ñ 8. �

5.2.2. Weak convergence. The next lemma is needed in the proofs of Proposition 3.8 and
Theorem 3.10.

Lemma 5.6. Subject to Assumptions 3.1 and 3.6, grFns ñ grF s on DppW , d˝q, r0, T sq.

Proof. By Assumptions 3.1 and 3.6, we can apply the continuous mapping theorem to
establish that

grFns ñ grF s on DppW , ‖¨‖L1q, r0, T sq. (5.25)

Because pW , ‖¨‖L1q is a stronger topology than pW , d˝q, this implies the claim. �

Proof of Proposition 3.8. By Lemma 5.6, we have grFns
f.d.d.
ñ grF s on pW , d˝q. From (3.6),

Assumption 3.7, the uniform bound and [10, Lemma 5.11] we know that, for any t P r0, T s,

lim
nÑ8

Ppδ˝phGnptq, grFnsptqq ď εq “ 1, (5.26)

which implies that

lim
nÑ8

PphGnptiq P B˝pg
rFnsptiq, εq, @iq “ 1. (5.27)

The claim therefore follows from [20, Corollary 3.3]. �

Proof of Theorem 3.10. By Lemma 5.6 and [20, Corollary 3.3], it suffices to prove that

‖grFns ´ hGn‖Ñ 0, with probability 1, (5.28)

where ‖ ¨ ‖ denotes the uniform norm. Define grFns

δ such that

grFns
n ptq “ gpδiq, for t P rδi, δpi` 1qq. (5.29)

It suffices to show that

lim
δÓ0

lim
nÑ8

”

‖grFns ´ g
rFns

δ ‖` ‖grFns

δ ´ hGn‖
ı

“ 0 with probability 1. (5.30) {eqn:NGl}{eqn:NGl}

We first deal with the second term on the left-hand-side of (5.30).vBy the same arguments
as in the proof of Proposition 3.8, for any δ, ε ą 0,

lim
nÑ8

PphGnpδiq P B˝pg
rFnspδiq, εq @ i “ 0, 1, . . . , tT {δuq “ 0. (5.31) {eqn:CLLN}{eqn:CLLN}
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Thus,

lim
δÓ0

lim
nÑ8

Pp‖grFns

δ ´ hGn‖ ą 2εq

ď lim
δÓ0

lim
nÑ8

T {δ
ÿ

i“1

"

Ppd˝pg
rFns

δ pδiq, hGnpδiq ą εq ` P
ˆ

Cnpt, δq ą ε

ˆ

n

2

˙˙*

“ 0,

(5.32)

where in the final step we apply (5.31) and Assumption 3.9. To deal with the first term
on the right-hand-side, we use the fact that grF s takes values in DppW , d˝q, r0, T sq. [Need
something slightly more here.] �

5.3. Proofs of the results in Section 4.

5.3.1. Proofs of the results in Section 4.1. To prove Theorem 3.10 we construct a graphon-
valued process that mimics the behaviour of ph̃ pGnptqqtě0 while still falling into the framework
of Section 3. We couple the two processes and demonstrate that, under the coupling, the
probability that the two processes deviate from each other significantly is on the same scale
as the edge-level fluctuations, i.e., of order e´p

n
2q`op1q.

Constructing a mimicking process: Suppose that the process pG˚nptqqtě0 is characterised by
the following dynamics:

‚ G˚np0q is the empty graph.
‚ Each vertex v is assigned an independent rate-γ Poisson clock. Each time the clock
rings, all the edges that are adjacent to v become inactive.

‚ If edge ij is inactive, then it becomes active at rate

λpt, Yiptq, Yjptq, Fnpt; ¨q, g̃
rFnspt; ¨, ¨qq.

‚ If edge ij is active, then it becomes inactive at rate

µpt, Yiptq, Yjptq, Fnpt; ¨q, g̃
rFnspt; ¨, ¨qq.

Here, gr¨spt; ¨, ¨q is defined in (4.4). We point out that the induced reference graphon process
of pG˚ptqqtě0 is indeed grF s. Note that the only difference between the transition rates of
pGnptqqtě0 and pG˚nptqqtě0 is that in the transition rate functions λp¨q and µp¨q we have
replaced h̃Gnptq by g̃rFnspt; ¨, ¨qq.
Theorem 3.10 follows by verifying that we can apply Theorem 3.5 to tpGnptqqtě0unPN, and

using the following lemma.

Lemma 5.7. There exists a coupling of pGnptqqtě0 and pG˚nptqqtě0 such that, for any η ą 0,

lim sup
nÑ8

1
`

n
2

˘ logP
´

‖h̃Gnptq ´ h̃G
˚
nptq‖L1 ą η, for some t P r0, T s

¯

ě ´Cpηq ą 0. (5.33)

Proof. The claim is proved in three steps.

Step 1: describe the coupling. Let Cmax be the maximal value that λp¨q and µp¨q can take,
i.e.,

Cmax “ max
tPr0,T s,u,vPr0,1s,FPMpr0,1sq,h̃PW̃

λpt, u, v, F, h̃q _ µpt, u, v, F, h̃q, (5.34)
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and observe that Cmax ă 8 because λp¨q and µp¨q are Lipshitz continuous functions with a
compact domain. Suppose that outcomes of pGnptqqtě0 and pG˚nptqqtě0 are generated in the
following manner.

‚ For each i P rns, vertex i is assigned the same Poisson clock in both processes, so
that if the clock associated with vertex i rings in pGnptqqtě0 at time s, then the
clock associated with vertex i also rings in pG˚nptqqtě0 at time s (and vice-versa).

‚ Assign each edge the same (coupled) Poisson rate-Cmax clock. When the Poisson
clock associated with edge ij rings, generate an outcome u of a Upr0, 1sq distribution.
– u ď λpt, Yiptq, Yjptq, Fn, h̃

Gnptqqq{Cmax:
edge ij becomes active in p pGnptqqtě0.

– u ď λpt, Yiptq, Yjptq, Fn, g̃
rFnspt; ¨, ¨qq{Cmax:

edge ij becomes active in p pG˚nptqqtě0.
(If it was already active, then it remains active.)

‚ Assign each edge a second (coupled) Poisson rate-Cmax clock. When the Poisson
clock associated with edge ij rings, generate an outcome u of a Upr0, 1sq distribution.
– u ď µpt, Yiptq, Yjptq, Fn, h̃

Gnptqq{Cmax:
edge ij becomes inactive in p pGnptqqtě0.

– u ď µpt, Yiptq, Yjptq, Fn, g̃
rFnspt; ¨, ¨qq{Cmax:

edge ij becomes inactive in p pG˚nptqqtě0.
(If it was already inactive, then it remains inactive.)

Step 2: dominate the L1 distance. Observe that if edge ij is inactive in both models and
the clock associated with an edge ij rings, then a difference is formed (i.e., edge ij is active
in one process and inactive in the other) with probability

|λpt, Yiptq, Yjptq, Fn, h̃
Gnptqqq ´ λpt, Yiptq, Yjptq, Fn, g̃

rFnspt; ¨, ¨qq|

Cmax
. (5.35)

At any time t, by the Lipshitz continuity of λp¨q,

|λpt, Yiptq, Yjptq, Fn, h̃
Gnptqqq ´ λpt, Yiptq, Yjptq, Fn, g̃

rFnspt; ¨, ¨qq|

ď c
”

δ˝pg̃
pFnqpt; ¨, ¨q, h̃G

˚
nptqq ` δ˝ph̃

G˚nptq, h̃Gnptqq

ı

ď c
”

δ˝pg̃
pFnqpt; ¨, ¨q, h̃G

˚
nptqq ` ‖hG˚nptq ´ hGnptq‖L1

ı

,

(5.36) {eqn:rBg}{eqn:rBg}

where c is the Lipshitz constant. Observe that an equivalent bound holds when λp¨q is
replaced by µp¨q.
To bound the first term on the right-hand-side of (5.36) we verify that, for any β ą 0,

´ lim sup
nÑ8

1
`

n
2

˘P
´

δ˝pg̃
pFnqpt; ¨, ¨q, h̃G

˚
nptqq ą β, for some t P r0, T s

¯

ě C1pβq ą 0. (5.37)

This can be done by using similar arguments as in the proof of Theorem 3.10. [Explain.]
Hence we may assume that δ˝pg̃pFnqpt; ¨, ¨q, h̃G

˚
nptqq ą β for all t P r0, T s and any β ą 0.

To bound the second term on the right-hand-side of (5.36), first note that when the clock
associated with a vertex rings it can only eliminate differences because in both processes all
edges adjacent to this vertex are then inactive. Consequently, using superposition Poisson



22 PETER BRAUNSTEINS, FRANK DEN HOLLANDER, AND MICHEL MANDJES

processes, we see that the number of differences at time t is dominated by a Markov chain
pZnptqqtě0 with Znp0q “ 0 and transition probabilities

i ÞÑ i` 1 at rate 2cCmax

„

β

ˆ

n

2

˙

` i



. (5.38){eq:dp}{eq:dp}

In other words, on an event with probability 1´ e´C1pβqp
n
2q`op1q, we have

‖hG˚nptq ´ hGnptq‖L1

s.t.
ď

ˆ

n

2

˙´1

Znptq. (5.39)

Note that the first term of the right-hand-side of (5.38) corresponds to the first term on the
right-hand-side of (5.36), while the second term of the right-hand-side of (5.38) corresponds
to the second term on the right-hand-side of (5.36).

Step 3: bound the dominating process. By observing that pZnptqqtPr0,T s is a pure birth
process, we see that it remains to show that, for any η ą 0,

lim sup
nÑ8

1
`

n
2

˘ logP
ˆ

ZnpT q ą η

ˆ

n

2

˙˙

ě ´Cpηq ą 0 (5.40)

for some Cpηq ą 0. To bound ZnpT q, let C˚ :“ 2cCmax. Observe that the Markov chain
pZnptqqtě0 described by (5.38) is a continuous-time branching process with immigration.
The initial population size is 0, immigrants arrive at rate 2cCmaxβ

`

n
2

˘

, while individuals in
the population give birth at rate 2cCmax and die at rate 0. Let Xptq denote of the number
of descendants that are alive at time T of an individual that immigrated to the population
at time t ă T . It was shown by Yule (cf. [23, Chapter V.8]) that

PpXt “ iq “ e´C
˚pT´tqp1´ e´C

˚pT´tqqi´1, i P N, (5.41)

and 0 otherwise, i.e., X ´ 1 has a geometric distribution with success probability e´C
˚pT´tq.

Note that (since the death rate of individuals is zero) X0

s.t.
ě Xt for all t ě 0. In addition,

the total number of immigrants has a Poisson distribution with mean C˚β
`

n
2

˘

T . Thus,

if tXpk,`q0 uk,`PN are i.i.d. copies of X0 and Y “
řpn2q
k`1 Y

pkq, where Y pkq „ PoipC˚βT q is
independent of everything else, then

ZnpT q
s.t.
ď Z˚npT q :“

Y
ÿ

i“1

X
pi,1q
0

d
“

pn2q
ÿ

i“1

Y piq
ÿ

k“1

X
pi,kq
0 . (5.42)

We have

ϕpsq :“ E
ˆ

es
řY piq

k“1 X
pi,kq
0

˙

“ E
ˆ

E
´

esX
pi,kq
0

¯Y piq
˙

“ exp

#

C˚βT

˜

e´C
˚T`s

1´ p1´ e´C˚T qes
´ 1

¸+

.

(5.43)

Letting Ipzq “ supsPR rzs´ ϕpsqs, and applying Cramer’s theorem, we therefore have

P
ˆ

Z˚npT q ě η

ˆ

n

2

˙˙

ď e´p
n
2qpIpηq`op1qq @ z ě EpY q “ cβ

ˆ

n

2

˙

T ecT , (5.44)

The claim now follows by observing that for any η ą 0 we can select β ą 0 sufficiently small
so that Ipηq ą 0. �
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5.3.2. Proofs of the results in Section 4.2. [To be written.]

5.3.3. Proofs of the results in Section 4.3. .

Proof of Proposition 4.4. Pick P1, P2 PMpr0, T sq and suppose that

2

ż 1

0

ż y

0
xPipdxqPipdyq ď e˚, i “ 1, 2. (5.45) {eq:EDA}{eq:EDA}

Observe that if Xpkqi are independent random variables with distribution Pi, then

2

ż 1

0

ż y

0
xPipdxqPipdyq “ EpXp1qi ^X

p2q
i q. (5.46)

Let P3 “ cP1 ` p1´ cqP2 with c P r0, 1s. We have

2

ż 1

0

ż y

0
xP3pdxqP3pdyq “ EpXp1q3 ^X

p2q
3 q

“ c2EpXp1q1 ^X
p2q
1 q ` p1´ cq2EpXp1q2 ^X

p2q
2 q ` 2cp1´ cqEpXp¨q1 ^X

p¨q

2 q

ď e˚pc2 ` p1´ cq2q ` 2cp1´ cqEpXp1q1 ^X
p1q
2 q.

(5.47)

Hence it remains to show that EpXp1q1 ^X
p1q
2 q ď e˚. We have

EpXp¨q1 ^X
p¨q

2 q “

ż 1

0
dxPpX1 ě xqPpX2 ě xq (5.48)

ď

ˆ
ż 1

0
dxPpX1 ě xq2

ż 1

0
dxPpX2 ě xq2

˙1{2

ď e˚, (5.49)

where in the second step we apply the Cauchy-Schwarz inequality, and in the final step use
(5.45). �

Appendix A. Appendix: rate function for the driving process

To establish an LDP for tph̃ pGnptqqtPr0,T sunPN, we first need to establish an LDP for the
driving process, and thus verify that Assumption 3.2 holds. Note that Lemma A.1 gives an
LDP for tpf˚n ptqqtPr0,T suně0, where

f˚n ptq “
1

n

n
ÿ

i“1

δYiptq. (A.1)

In preparation, for A Ď R` (such that A “ ra, bs implies A` c “ ra` c, b` cs) we let

D1µtpAq “ lim
hÑ0

µt`hpA` hq ´ µtpAq

h
. (A.2)

Lemma A.1. The sequence of processes pf˚n qnPN satisfies the LDP on Dpr0, T s,Mpr0, 1sqq

with rate n and with rate function

Kpµq “

ż T

0
dt

ż 8

0
rγµipdxq ´D1µtpdxqs `

ż T

0
dt

ż 8

0
D1µtpdxq log

ˆ

D1µtpdxq

µipdxqftp0q

˙

`

ż T

0
dt ftp0q logpftp0q{γq,

(A.3) {eq:rateex1}{eq:rateex1}

where ftp0q :“ limhÑ0 µtpr0, hsq{h.
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Proof. [Some arguments are in the notes document.] �

We apply the standard method of proving sample-path LDPs: establish a finite-dimensional
LDP and prove tightness. [Write out the tightness arguments.]
For t P r0, T s, let

Lnptq “
1

n

n
ÿ

i“1

δpXiptqq, (A.4)

where Lnptq is a random variable on MpR`q. We assume that

Lnp0q “
1

n

n
ÿ

i“1

δpXip0qq Ñ v (A.5){DGa}{DGa}

in MpR`q.

Guessing the rate function: Before deriving the finite-dimensional LDP, let us first guess
the one-step rate function (the finite-dimensional LDP is an easy consequence). First note
that if there exists x ą 0 such that µpx` tq ą vpxq, then Iptqv pµq “ 8. This is because the
only vertices that can be of age x` t at time t are those whose age at time 0 was x. When
I
ptq
v pµq ă 8, we expect that

Iptqv pµq “

ż 8

0
vpdxq

„

µpdpx` tqq

vpdxq
log

µpdpx` tqq

vpdxqe´γt
(A.6){Gu1}{Gu1}

`

ˆ

vpdxq ´ µpdpx` tqq

vpdxq

˙

log

ˆ

vpdxq ´ µpdpx` tqq

vpdxqp1´ e´γtq

˙

(A.7){Gu2}{Gu2}

`

ż t

0
µpdyq log

ˆ

µpdyq

dyγe´γy

˙

. (A.8){Gu3}{Gu3}

This is because we can effectively think of simulating the age distribution at time t in two
steps. First, for each initial age window dx we determine what proportion of the vertices
have not turned off. Second, conditional on a vertex turning off in r0, ts, its age is distributed
according to a truncated exponential with rate γ (see explanation below). Thus, we obtain
(A.6) and (A.7) from the LDP for sums of Bernoulli random variables, and (A.8) from
Sanov’s theorem.
Below we will find that this expression is not correct.

Derivation of the rate function: To establish a finite-dimensional LDP we apply [16, Theorem
3.5], which is stated below. In preparation, let

P ptqx pdyp1q, . . . ,dyprqq “ PpXipt1q P dyp1q, . . . , Xiptrq P dyprqq, (A.9)

where t “ pt1, . . . , trq with 0 ď t1 ă t2 ă ¨ ¨ ¨ ă tr ď T .

Theorem A.2. If (A.5) holds, then the measures PppLnpt1q, . . . , Lnptrqq P ¨q satisfy the
LDP with speed n and rate function

Iptqv pµ1, . . . , µrq

“ sup
f1,...,frPCbpR`qr

„ r
ÿ

i“1

ż

R`
µipdzqfipzq



GRAPHON-VALUED PROCESSES 25

´

ż

R`
vpdxq log

ż

Rr
`

P ptqx pdyp1q, . . . ,dyprqq exp

˜

r
ÿ

i“1

fipy
piqq

¸



,

where pµ1, . . . , µrq PMpR`qr.

To apply Theorem A.2, we need to be able to write down a formula for P ptqx pdyp1q, . . . , dyprqq.
By the Markov property, this is essentially equivalent to writing down an expression for P ptqx
(i.e., for a single time step). If Xip0q “ x, then the probability that Xiptq “ x` t is e´γt

(i.e., the probability that the Poisson clock associated with vertex i does not ring in the
time interval r0, ts). On the other hand, if y ď t, then the probability that Xiptq P dy is the
probability that the Poisson clock associated with vertex i rings in the time interval t´ dy

(which occurs with probability γdy) and afterwards does not ring again (which occurs with
probability e´γy). We thus have

P ptqx pdyq “

$

’

’

&

’

’

%

e´γt if y “ x` t,

γdye´γy if y ď t,

0 otherwise.

(A.10)

If we apply Theorem A.2 for a single time step, then we obtain

Iptqv pµq “ sup
fPCbpr0,8qq

„
ż 8

0
µpdzqfpzq ´

ż 8

0
vpdxq log

ˆ
ż 8

0
P ptqx pdyqe

fpyq

˙

“ sup
fPCbr0,8q

„
ż 8

0
µpdzqfpzq ´

ż 8

0
vpdxq log

ˆ

e´γt`fpx`tq `

ż t

0
dyγe´γy`fpyq

˙

.

(A.11) {DZc}{DZc}

We would like to derive a closed form expression for Iptqpµq. To do this, we first take the
derivative of

ż 8

0
µpdzqfpzq ´

ż 8

0
vpdxq log

ˆ

e´γt`fpx`tq `

ż t

0
dy γe´γy`fpyq

˙

(A.12) {JEq}{JEq}

with respect to fpx` tq when x ě 0, and set this to 0. This gives

µpdpx` tqq ´ vpdxq
e´γt`fpx`tq

e´γt`fpx`tq `
şt
0 dyγe´γy`fpyq

“ 0, (A.13)

which implies

µpdpx` tqq

ż t

0
dy γe´γy`fpyq “ rvpdxq ´ µpdpx` tqqs e´γt`fpx`tq. (A.14)

Thus,

efpx`tq “
µpdpx` tqq

şt
0 dy γe´γy`fpyq

rvpdxq ´ µpdpx` tqqs e´γt
(A.15)

and

fpx` tq “ log

˜

µpdpx` tqq
şt
0 dy γe´γy`fpyq

rvpdxq ´ µpdpx` tqqs e´γt

¸

. (A.16) {fxtE}{fxtE}
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Substituting (A.16) into (A.12), we obtain

(A.12) “
ż t´

0
µpdzq fpzq `

ż 8

0
µpdpx` tqq log

˜

µpdpx` tqq
şt
0 dy γe´γy`fpyq

rvpdxq ´ µpdpx` tqqs e´γt

¸

´

ż 8

0
vpdxq log

˜

e´γt
µpdpx` tqq

şt
0 dy γe´γy`fpyq

rvpdxq ´ µpdpx` tqqs e´γt
`

ż t

0
dy γe´γy`fpyq

¸

“

ż t´

0
µpdzqfpzq `

ż 8

0
µpdpx` tqq log

˜

µpdpx` tqq
şt
0 dy γe´γy`fpyq

rvpdxq ´ µpdpx` tqqs e´γt

¸

´

ż 8

0
vpdxq log

ˆ

vpdxq

vpdxq ´ µpdpx` tqq

ż t

0
dy γe´γy`fpyq

˙

“

ż 8

0
µpdpx` tqq log

ˆ

µpdpx` tqq

rvpdxq ´ µpdpx` tqqs e´γt

˙

´

ż 8

0
vpdxq log

ˆ

vpdxq

vpdxq ´ µpdpx` tqq

˙

`

ż t´

0
µpdzq fpzq ´

ż 8

0
rvpdxq ´ µpdpx` tqqs log

ˆ
ż t

0
dy γe´γy`fpyq

˙

.

(A.17)

We now optimise over fpzq, 0 ď z ď t. To do this, we take the derivative of
ż t´

0
µpdzq fpzq ´

ż 8

0
rvpdxq ´ µpdpx` tqqs log

ˆ
ż t

0
dz γe´γz`fpzq

˙

(A.18){fuwrE}{fuwrE}

“

ż t´

0
µpdzq fpzq ´

ˆ

1´

ż 8

t`
µpdxq

˙

log

ˆ
ż t

0
dz γe´γz`fpzq

˙

(A.19){flwrE}{flwrE}

with respect to fpzq for a fixed z P r0, ts, and set this to 0. We obtain

µpdzq ´

ˆ

1´

ż 8

t`
µpdxq

˙

dz γe´γz`fpzq
şt
0 dz γeγz`fpzq

“ 0, (A.20)

which implies that

µpdzq

ż t

0
dy γe´γy`fpyq “

ˆ

1´

ż 8

t`
µpdxq

˙

dz γe´γz`fpzq. (A.21)

Thus,

efpzq “
µpdzq

şt
0 dy γe´γy`fpyq

´

1´
ş8

t` µpdxq
¯

dz γe´γz
(A.22)

and

fpzq “ log

¨

˝

µpdzq
şt
0 dy γe´γy`fpyq

´

1´
ş8

t` µpdxq
¯

dz γe´γz

˛

‚. (A.23){fzLwr}{fzLwr}
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Substituting (A.23) into (A.19), we obtain

ż t´

0
µpdzq log

¨

˝

µpdzq
şt
0 dy γe´γy`fpyq

´

1´
ş8

t` µpdxq
¯

dz γe´γz

˛

‚´

ˆ

1´

ż 8

t`
µpdxq

˙

log

ˆ
ż t

0
dz γe´γz`fpzq

˙

“

ż t´

0
µpdzq log

ˆ

µpdzq

dzγe´γz

˙

´

ż t´

0
µpdzq log

ˆ
ż t´

0
µpdzq

˙

.

(A.24)

Combining this with (A.18), we obtain

(A.12)

“

ż 8

0
µpdpx` tqq log

ˆ

µpdpx` tqq

rvpdxq ´ µpdpx` tqqse´γt

˙

´

ż 8

0
vpdxq log

ˆ

vpdxq

vpdxq ´ µpdpx` tqq

˙

`

ż t´

0
µpdzq log

ˆ

µpdzq

dz γe´γz

˙

´

ż t´

0
µpdzq log

ˆ
ż t´

0
µpdzq

˙

“

ż 8

0
rvpdxq ´ µpdpx` tqqs log pvpdxq ´ µpdpx` tqqq

`

ż 8

0
µpdpx` tqq log

ˆ

µpdpx` tqq

e´γt

˙

´

ż 8

0
vpdxq logpvpdxqq ´

ż t´

0
µpdzq log

ˆ
ż t´

0
µpdzq

˙

`

ż t´

0
µpdzq log

ˆ

µpdzq

dx γe´γz

˙

“

ż 8

0
vpdxq

„

vpdxq ´ µpdpx` tqq

vpdxq
log

ˆ

vpdxq ´ µpdpx` tqq

vpdxq

˙

`
µpdpx` tqq

vpdxq
log

ˆ

µpdpx` tqq

e´γtvpdxq

˙

´

ˆ
ż t´

0
µpdzq

˙

log

ˆ
ż t´

0
µpdzq

˙

`

ż t´

0
µpdzq log

ˆ

µpdzq

dx γe´γz

˙

.

Rearranging further, we obtain

Iptqv pµq “

ż 8

0
µpdpx` tqq log

ˆ

µpdpx` tqq

vpdxq e´γt

˙

`

ż 8

0
rvpdxq ´ µpdpx` tqqs log

˜

vpdxq ´ µpdpx` tqq

vpdxq
şt´
0 µpdzq

¸

`

ż t´

0
µpdzq log

ˆ

µpdzq

dx γe´γz

˙

.

(A.25) {FDRF}{FDRF}
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Is this expression correct?: If we rewrite the expression that we guessed for the rate function
in (A.6)–(A.8), then we have

Iptq˚v pµq “

ż 8

0
µpdpx` tqq log

µpdpx` tqq

vpdxq e´γt

`

ż 8

0
rvpdxq ´ µpdpx` tqqs log

ˆ

vpdxq ´ µpdpx` tqq

vpdxq p1´ e´γtq

˙

`

ż t

0
µpdyq log

ˆ

µpdyq

dy γe´γy

˙

.

(A.26) {Gu4}{Gu4}

We then need to determine which of (A.25) or (A.26) gives the correct expression for the
rate function.vWe know that if all individuals initially have the same age, then Iptqv pµq is
the relative entropy from P

ptq
v to µ. Suppose that

vpdxq “

#

1, if x “ 0,

0, otherwise.
(A.27)

From (A.25) we have

Iptqv pµq “ µptq log

ˆ

µptq

e´γt

˙

` p1´ µptqq log

ˆ

1´ µptq

1´ µptq

˙

`

ż t´

0
µpdyq log

ˆ

µpdyq

dy γe´γy

˙

“ µptq log

ˆ

µptq

e´γt

˙

`

ż t´

0
µpdyq log

ˆ

µpdyq

dy γe´γy

˙

,

(A.28)

which is the relative entropy from P
ptq
v to µ. Thus, we expect (A.25) to be the correct

expression for the rate function.

[References need to be made complete and need to be checked.]

References

[1] Athreya, S., Hollander, F. D., and Röllin, A. (2019). Graphon-valued stochastic processes from
population genetics. arXiv:1908.06241.

[2] Athreya, S., and Rollin, A. (2016). Dense graph limits under respondent-driven sampling. The Annals
of Applied Probability 26(4), 2193–2210.

[3] Billingsley, P. (1979). Probability and Measure. Wiley, New York.
[4] Budhiraja, A., and Dupuis, P. (2019). Analysis and Approximation of Rare Events: Representations

and Weak Convergence Methods. Springer, New York.
[5] Borgs, C., Chayes, J., Gaudio, J., Petti, S., and Sen, S. (2020). A large deviation principle for block

models. arXiv preprint arXiv:2007.14508.
[6] Bovier, A., and Gayrard, V. (1999). Sample path large deviations for a class of Markov chains related

to disordered mean field models. arXiv math/9905022.
[7] Bovier, A., and den Hollander, F. (2016). Metastability: A Potential-Theoretic Approach. Grundlehren

der mathematischen Wissenschaften 351. Springer.
[8] Braunsteins, P., den Hollander, F., and Mandjes, M. (2020). A sample-path large deviation principle

for dynamic Erdős–Rényi random graphs. arXiv:2009.12848.
[9] Černý, J., and Klimovsky, A. (2020). Markovian dynamics of exchangeable arrays. In: Genealogies

of Interacting Particle Systems. Lecture Notes Series, Institute for Mathematical Sciences, National
University of Singapore, pp. 209–228.



GRAPHON-VALUED PROCESSES 29

[10] Chatterjee, S. (2017). Large Deviations for Random Graphs Lecture Notes in Mathematics 2197.
Springer.

[11] Chatterjee, S., and Dembo, A. (2016). Nonlinear large deviations. Advances in Mathematics 299,
396–450.

[12] Chatterjee, S., and Varadhan, S.R.S. (2011). The large deviation principle for the Erdős-Rényi random
graph. European Journal of Combinatorics 32 (7), 1000–1017.

[13] Crane, H. (2015). Time-varying network models. Bernoulli 21(3), 1670–1696.
[14] Crane, H. (2016). Dynamic random networks and their graph limits. The Annals of Applied Probability

26(2), 691–721.
[15] Crane, H. (2017). Exchangeable graph-valued Feller processes. Probability Theory and Related Fields

168(3), 849–899.
[16] Dawson, D A., and Gärtner, J. (1987). Large deviations from the McKean-Vlasov limit for weakly

interacting diffusions. Stochastics: An International Journal of Probability and Stochastic Processes
20(4), 247–308.

[17] Dembo, A., and Zeitouni, O. (1998). Large Deviations Techniques and Applications. Stochastic
Modelling and Applied Probability 38. Springer, New York.

[18] Dhara, S., and Sen, S. (2019). Large deviation for uniform graphs with given degrees. arXiv:1904.07666.
[19] Dupuis, P., and Medvedev, G. (2020). The large deviation principle for interacting dynamical systems

on random graphs. arXiv:2007.13899.
[20] Ethier, S. N., and Kurtz, T.G. (2009). Markov Processes: Characterization and Convergence. Wiley

Series in Probability and Mathematical Statistics 282. John Wiley & Sons.
[21] Feng, J., and Kurtz, T.G. (2006). Large Deviations for Stochastic Processes. Mathematical Surveys

and Monographs 131. American Mathematical Society.
[22] Grebík, J., and Pikhurko, O. (2021). Large deviation principles for block and step graphon random

graph models. arXiv:2101.07025.
[23] Harris, T.E. (1963). The Theory of Branching Processes. Grundlehren der mathematischen Wis-

senschaften 196. Springer, Berlin.
[24] den Hollander, F. (2000). Large Deviations. Fields Institute Monograph 14. American Mathematical

Society, Providence RI, USA.
[25] Lovász, L. (2012). Large Networks and Graph Limits. American Mathematical Society, Providence RI,

USA.
[26] Lovász, L., and Szegedy, B. (2006). Limits of dense graph sequences. Journal of Combinatorial Theory,

Series B 96, 933–957.
[27] Lubetzky, E., and Zhao, Y. (2015). On replica symmetry of large deviations in random graphs. Random

Structures & Algorithms 47(1), 109–146.
[28] Méliot, P.-L. (2021) A central limit theorem for singular graphons. arXiv:2103.15741.
[29] Markering, M. (2020). The large deviation principle for inhomogeneous Erdő sRényi random graphs.

arXiv:2010.03504.
[30] Röllin, A., and Zhang, Z.S. (2021). Dense multigraphon-valued stochastic processes and edge-changing

dynamics in the configuration model. arXiv:2104.13024.



30 PETER BRAUNSTEINS, FRANK DEN HOLLANDER, AND MICHEL MANDJES

Korteweg-de-Vries Instituut, Universiteit van Amsterdam, PO Box 94248, 1090 GE Ams-
terdam, The Netherlands

Email address: pbraunsteins@gmail.com

Mathematisch Instituut, Universiteit Leiden, PO Box 9512, 2300 RA Leiden, The Nether-
lands

Email address: denholla@math.leidenuniv.nl

Korteweg-de Vries Instituut, Universiteit van Amsterdam, PO Box 94248, 1090 GE Ams-
terdam, The Netherlands

Email address: M.H.R.Mandjes@uva.nl


	1. Introduction
	1.1. Background
	1.2. Motivation
	1.3. Outline

	2. Large deviations for static random graphs
	2.1. Graphs and graphons
	2.2. Inhomogeneous Erdos–Renyi random graph
	2.3. Inhomogeneous random graphs with type dependence
	2.4. Key assumptions
	2.5. LDP for IRGwTPs

	3. Graphon-valued processes
	3.1. The model
	3.2. An illustrative example
	3.3. Sample-path large deviations
	3.4. Stochastic process convergence

	4. Applications and extensions
	4.1. Beyond conditional independence of edges
	4.2. Different edge-switching dynamics, equivalent sample-path LDP
	4.3. The most likely path to an unusually small edge density

	5. Proofs
	5.1. Proofs of the results in Section 2
	5.2. Proofs of the results in Section 3
	5.3. Proofs of the results in Section 4

	Appendix A. Appendix: rate function for the driving process
	References

