
DISCORDANT EDGES FOR THE VOTER MODEL
ON REGULAR RANDOM GRAPHS

LUCA AVENA, RANGEL BALDASSO, RAJAT SUBHRA HAZRA, FRANK DEN HOLLANDER,
MATTEO QUATTROPANI

ABSTRACT. We consider the two-opinion voter model on a regular random graph with
n vertices and degree d ≥ 3. It is known that consensus is reached on time scale n and
that on this time scale the volume of the set of vertices with one opinion evolves as a
Fisher-Wright diffusion. We are interested in the evolution of the number of discordant
edges (i.e., edges linking vertices with different opinions), which can be thought as the
perimeter of the set of vertices with one opinion. We show that if initially the two opinions
are drawn independently from a Bernoulli distribution with parameter u ∈ (0, 1), then on
time scale 1 the fraction of discordant edges decreases and stabilises to a value that depends
on d and u, and is related to the meeting time of two random walks on an infinity tree of
degree d starting from two neighbouring vertices. Moreover, we show that on time scale n
the fraction of discordant edges moves away from the constant plateau and converges to
zero in an exponential fashion. Our proofs exploit the classical dual system of coalescing
random walks and use ideas from Cooper et al. (2010) built on the so-called First Visit Time
Lemma. We further introduce a novel technique to derive concentration properties from
weak-dependence of coalescing random walks on moderate time scales.

Key words. Regular random graph, voter model, random walks, discordant edges, concen-
tration.

MSC2020: 05C81, 60K35.

Acknowledgement. This research was supported by the European Union’s Horizon 2020 re-
search and innovation programme under the Marie Skłodowska-Curie grant agreement no.
101034253 , and by the NWO Gravitation project NETWORKS under grant no. 024.002.003.

1. MODEL, LITERATURE AND RESULTS

Random processes on random graphs constitute a research area that poses many chal-
lenges. In the past decade, considerable progress has been made in understanding how
the geometry of the graph affects the evolution of the process. In terms of the choice of
graph, the focus has been on the Erdös-Rényi random graph, the configuration model,
the preferential attachment model, and the exponential random graph, either directed or
undirected, and in regimes ranging from sparse to dense. In terms of the choice of process,
the focus has been on percolation, random walk, the stochastic Ising model, the contact
process, and the voter model. What makes the area particularly interesting is that there is
a delicate interplay between the size of the graph and the time scale on which the process
is observed. For short times, the process behaves as if it lives on an infinite graph. For in-
stance, many sparse graphs are locally tree-like and therefore the process behaves as if it
evolves on an infinite Galton-Watson tree. For long times, however, the process sees that
the graph is finite and exhibits a crossover in its behaviour. For instance, the voter model,
which will be the process of interest in the present paper, eventually reaches consensus
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on any finite connected graph, but the time at which it does depends on the size of the
graph. Many such instances can be captured under the name of finite-systems scheme, i.e.,
the challenge to identify how a finite truncation of a stochastic system behaves as both the
time and the truncation level tend to infinity, properly tuned together (Cox and Greven
(1990), Cox and Greven (1994)).

Random processes on random graphs are part of the larger research area of random
processes in random environment, where the environment selects the random transition
probabilities or transition rates. Another name is that of interacting particle systems in
random environment. For random process on lattices a more or less complete theory has
been developed over the past four decades. The challenge is to extend this patrimony to
random graphs. In the present paper we focus on the voter model on the regular random
graph in the sparse regime. We track how the fraction of discordant edges evolves over time
in the limit as the size of the graph tends to infinity, and identify its scaling behaviour on
three time scales: short, moderate, and long.

Voter models were introduced and studied in Clifford and Sudbury (1973) and Hol-
ley and Liggett (1975). Voter models and their consensus times on finite graphs were
analysed in Donnelly and Welsh (1983) and Cox (1989). The behaviour of voter models
on random networks depends on the realisation of the network: Sood et al. (2008) made
various predictions for the expected consensus time on heterogeneous random networks
(including power-law random graphs). More recently, Fernley and Ortgiese (2019) study
the asymptotics of the consensus time on inhomogeneous random graph models like the
Chung-Lu model and the Norros-Reitu model. The expected consensus time for regular
random graphs was studied in Cooper et al. (2010), in the discrete-time synchronous set-
ting. As far as we know, there is no literature on the evolution of the number of discordant
edges on random graphs.

1.1. Model and background. Given a connected graph G = (V,E), the voter model is
the Markov process (ηt)t≥0 on state space {0, 1}V , with ηt = {ηt(x) : x ∈ V }, where ηt(x)
represents the opinion at time t of vertex x. Each vertex is equipped with an independent
exponential clock that rings at rate one, after which the vertex selects one of the neigh-
bouring vertices uniformly at random and copies its opinion. (A formal description of
this interacting particle system, its generator, and how its dynamics can be built up via
the so-called graphical representation is postponed to Section 2.)

As mentioned previously, while the voter dynamics has been widely studied on peri-
odic lattices, periodic tori, and complete graphs, only recently its evolution on general
connected graphs has been considered. In particular, as discussed below, if the underly-
ing (random or non-random) graph has sufficiently nice properties, then it is possible to
identify the time scale on which consensus takes place, and to determine how the process
behaves on this time scale. In the present paper we specialise to the d-regular random
graph ensemble with d ≥ 3. In particular, we consider the sequence of random graphs
(Gd,n(ω))n∈N, with law denoted by P, where each element Gd,n(ω) = (V,E(ω)) is a regu-
lar random graph of degree d ≥ 3, consisting of |V | = n vertices and |E(ω)| = m = dn/2
edges, uniformly sampled from the set of simple d-regular graphs with n vertices (to guar-
antee that dn is even, for d odd we restrict to n even). These graphs are locally tree-like
and have good expansion properties (see Section 2.3), lying within the realm of so-called
mean-field geometries (see Section 1.2). Therefore the voter model on the d-regular random
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graph ensemble can be investigated in some depth, and refined statements clarifying how
consensus is reached can be derived. In the present paper we analyse the evolution of the
density of discordances. In other words, denoting the set of discordant edges at time t by

Dn
t =

{
e = (x, y) ∈ E : ηt(x) ̸= ηt(y)

}
,

we will study the fraction of discordant edges at time t ≥ 0 given by

Dn
t =

|Dn
t |

m
(1.1)

in the limit as n → ∞.

1.2. Voter model on mean-field geometries.

• Voter model. A classical model of relevance in population genetics is the voter model
on the complete graph, which is referred to as the Moran model or the Fisher-Wright model
(depending on whether continuous-time asynchronous or discrete-time parallel updates
are considered). The states {0, 1} represent two different alleles, each coding for a spe-
cific genetic trait, and the n vertices of the complete graph Kn represent individuals in a
population of size n. In the limit as n → ∞, the consensus time (to be interpreted as the
extinction time of one of the two traits) is known to scale linearly in n. Furthermore, on
time scale n the fraction of the individuals of, say, type 1 converges as a process to the
so-called Fisher-Wright diffusion. These results can be derived by analysing the backward
genealogical progeny, which amounts to studying n coalescing random walks evolving
on the same graph, which in turn is related to the so-called Kingman coalescent (we refer
to Durrett (2008) for details). In Section 2 we give a precise description of this duality on
arbitrary graphs.

These by now classical results have been recently extended to general mean-field geome-
tries under two main conditions that can be roughly described as follows: (I) the station-
ary distribution of the random walk on the random graph must be not too concentrated; (II)
fast-mixing in the sense of an asymptotically vanishing ratio between the mixing time of
a single random walk and the expected meeting time of two independent random walks
starting from stationarity.

• Dual process. For what concerns the dual process of coalescing random walks, Oliveira
(2013) computes the distributional limit of the coalescence time under the above men-
tioned assumptions. In particular, it follows from (Oliveira, 2013, Theorem 1.2) that

lim
n→∞

E[τcoal]

E[τπ⊗πmeet]
= 2, (1.2)

where τcoal is the coalescence time of n random walks, each starting from a different ver-
tex, and τπ⊗πmeet is the meeting time of two random walks independently starting from sta-
tionarity. This offers insight into how the dual voter model behaves in mean-field like
geometries. In particular, (1.2) allows us to translate the question of how long it takes for
the voter model to achieve consensus to the question of controlling the meeting time of
two random walks starting from stationarity. Indeed, as a consequence of this duality, it is
immediate that the n-coalescence time τcoal stochastically dominates the above mentioned
consensus time, defined as

τcons = inf{t ≥ 0: ηt(x) = ηt(y), for all x, y ∈ V }. (1.3)
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For what concerns the convergence to a Fisher-Wright diffusion after proper scaling, the
recent work by Chen et al. (2016) considers the fraction of vertices in state 1 at time t in the
voter model,

Bn
t =

1

n

∑
x∈V

ηt(x), t ≥ 0, (1.4)

under the above mentioned mean-field conditions (see (Chen et al., 2016, Theorem 2.2) for
a precise formulation). The main result states that, when time is speeded up by a factor
γn := E[τπ⊗πmeet], the rescaled density of vertices in state 1, i.e., (Bn

γnt)t≥0, converges as n → ∞
to a Fisher-Wright diffusion in the Skorokhod topology.

• Regular random graphs as mean-field geometries. Let us next discuss the implications of
the results mentioned above within the specific framework of d-regular random graphs.
The latter is a geometric setting that satisfies the aforementioned mean-field conditions with
high probability with respect to the law P of the environment. Indeed, it is well known
that a typical realisation of the graph is connected with high probability as soon as d ≥
3. Due to the undirectedness of the edges, the corresponding stationary distribution is
uniform over the vertex set. Furthermore, with high probability under P, the mixing time
is of order log n (see Lubetzky and Sly (2010)), while the expected meeting time (see Chen
(2021)) satisfies

E[τπ⊗πmeet]

n

P−→ 1

2θd

with

θd =
d− 2

d− 1
. (1.5)

Hence, by applying (1.2) to this setting, we find that

E[τcoal]

n

P−→ 1

θd
.

Moreover, for the voter model starting from independent Bernoulli opinions with param-
eter u ∈ (0, 1), by Chen et al. (2016) we also have that the fraction of opinions of type 1,
i.e., Bn

t converges, after time is speeded up by a factor n, to the Fisher-Wright diffusion
(B̄s)s≥0 given by the SDE

dB̄s =
√

2θdB̄s(1− B̄s) dWs, B̄0 = u, (1.6)

where (Ws)s≥0 denotes the standard Brownian motion (with generator 1
2
∆).

In conclusion, on d-regular ensembles consensus is reached on average on time scale n
and, as far as the law is concerned, on the time scale of the consensus the process can be
well approximated by the Fisher-Wright diffusion in (1.6). Interestingly, as pointed out
by Chen et al. (2016), the diffusion coefficient in (1.6) (which is referred to as the genetic
variability in a population genetics context) can be related to the fraction of discordant
edges. This will be the starting point of our investigation, which is devoted to a deeper
understanding of the evolution of the voter model beyond the consensus time scale n, via
a detailed analysis of the discordant edges .

4



1.3. Main theorems: evolution of discordances and stabilisation before consensus. Be-
fore we present our main results, we introduce some notation. The symbols P and E will
be reserved for the probability space of the d-regular random graph. The abbreviation
whp refers to events that occur with probability P tending to 1 as n → ∞.

Thanks to the duality between the n-vertex voter model and a system of n-coalescing
random walks (to be described in more detail in Section 2), it is sufficient to look at a
collection of 2m Poisson processes, each associated with an (oriented) edge of the graph,
together with the initial assignment of the opinions. In this way, we can use the very
same source of randomness to sample the evolution of the voter model, the dual system
of coalescing random walks, and a system of n independent random walks, each starting
at a different vertex of the graph. For this reason we adopt the symbols P and E to refer
to any of these three stochastic processes evolving on a quenched realisation of the graph.
To distinguish between the random walks and the voter model, in the latter case we use
a sub-index to refer to the initial distribution of the process. For instance, Pξ denotes the
law of the voter model starting from the configuration η0 = ξ ∈ {0, 1}V . Similarly, when
we write Pu, we refer to the voter model initialised by a product of Bernoulli random
variables of mean u ∈ (0, 1). On the other hand, when considering a system of two or
more independent or coalescing random walks, we simply use the symbols P and E,
and the starting positions of the random walks will be clear from the context (with the
exception of Section 5, where an ad-hoc notation will be introduced). Finally, we write
Ber(u) for a Bernoulli distribution of parameter u.

We now present our main results. The first theorem identifies whp the first order asymp-
totics of the expected number of discordant edges on all time scales.

Theorem 1.1 (Expected density of discordances at all time scales). Fix d ≥ 3, and let θd be
as in (1.5). Fix u ∈ (0, 1), and consider the voter model on a d-regular random graph Gd,n(ω)
with initial distribution [Ber(u)]⊗V . Then, for any non-negative time tn, the density of discordant
edges in (1.1) satisfies ∣∣∣Eu

[
Dn

tn

]
− 2u(1− u)(1− fd(tn))e

−2θd tn
n

∣∣∣ P−→ 0, (1.7)

where

fd(t) = PTd(τx,ymeet ≤ t) =
∞∑
κ=0

e−2t
(2t)κ

κ!

⌊κ−1
2
⌋∑

s=0

(
2s

s

)
1

s+ 1

(1
d

)s+1(d− 1

d

)s
, (1.8)

with PTd denoting the law of two independent random walks on the infinite d-regular tree Td

starting from the endpoints of an edge e = (x, y) in Td.

Note that the limit is different depending on the time scale we are looking at:
• (Short time scale) For tn = Θ(1), the first order of the above expectation is given

by 2u(1 − u)(1 − fd(tn)), and the behaviour is governed by the non-decreasing
function captured in (1.8), representing the meeting time of two random walks
starting from adjacent vertices on an infinite d-regular tree. See Figure 1.

• (Moderate time scale) For tn = ω(1) ∩ o(n), the discordances stabilise at a limiting
plateau 2u(1 − u)(1 − fd(∞)) characterised by the probability that two adjacent
random walks on an infinite tree never meet, i.e., 1− fd(∞) = θd.
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• (Long time scale) For tn = sn, s ∈ (0,∞), the dual system coalesces and the voter
model reaches consensus. The evolution of the density of opinions is approxi-
mated by the Fisher-Wright diffusion in (1.6), and the expected density of discor-
dances is characterised by the mean of the genetic variability Eu

[
B̄s(1− B̄s)

]
=

2u(1− u)θde
−2θds. See Figure 2.

• (Consensus) For tn = ω(n), the system has reached consensus and the limiting
formula in (1.7) degenerates to zero.

0 1000 2000 3000 4000 5000
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0.3

0.4

0.5

Figure 1. The two plots show a single simulation of the voter model on a regular
random graph of size n = 1000, degree d = 3 and initial density u = 0.5. Left: In
blue the density of blue opinions up to consensus (τcons ≈ 2.6× 103), in orange the
density of discordant edges up to consensus. Right: In blue the density of discor-
dant edges up to time t = 5 (corresponding to a zoom-in of the plot to the left), in
red the function t 7→ 2u(1− u)fd(t).

Figure 2. Scatter plot in blue for the same simulation as in Figure 1: the density of
discordant edges versus the density of the minority opinion. The piece sticking out
corresponds to short times. The curve in red is x 7→ x(1− x).

The second theorem characterises the process Dn in (1.1) beyond its expectation. In par-
ticular, we show that on time scale o(n) the density of discordances concentrates around
the expectation, while on time scale Θ(n) it behaves as a deterministic function of the
Fisher-Wright diffusion.
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Theorem 1.2 (Beyond expectation). Consider the voter model on a d-regular random graph
Gd,n(ω) with d ≥ 3.

(i) Concentration before coalescence. Let tn be such that tn/n → 0. Then, for every ε > 0,

sup
ξ∈{0,1}V

Pξ

(∣∣Dn
tn − Eξ[Dn

tn ]
∣∣ > ε

) P−→ 0.

(ii) Discordance on consensus time scale. Let tn be such that tn/n → s ∈ (0,∞). Then, for
every u ∈ (0, 1),

sup
x∈[0,1]

∣∣Pu

(
Dn

tn ≤ x
)
−Pu

(
B̄2sθd(1− B̄2sθd) ≤ x

)∣∣ P−→ 0,

where (B̄s)s≥0 is the solution of (1.6).

The third and last theorem is a strengthening of Theorem 1.2(i). More precisely, we
show that as soon as we focus on the process for times that are polynomially smaller than
the consensus time, the concentration around the mean is actually uniform in time.

Theorem 1.3 (Uniform concentration on moderate time scale). Consider the voter model on
a d-regular random graph Gd,n(ω). Then, for every u ∈ (0, 1) and δ, ε > 0,

Pu

(
sup

0≤t≤n1−δ

∣∣Dn
t − Eu[Dn

t ]
∣∣ > ε

)
P−→ 0.

1.4. Open problems. We point out two open problems.
• Theorem 1.3 says that the concentration of the fraction of discordant edges is uni-

form up to times n1−δ, for any δ > 0. We expect that Theorem 1.3 can be strength-
ened to the statement that for every tn such that tn/n → 0 and every Cn → ∞,

P
( ∣∣Dn

tn − E[Dn
tn ]
∣∣ > Cn

√
tn/n

) P−→ 0. (1.9)

Note that, thanks to Azuma inequality, the concentration in (1.9) holds for the
quantity Bn

t in (1.4), because this is a martingale. Note further that the concentra-
tion in Theorem 1.3 follows from (1.9) and a union bound. For now, (1.9) is beyond
our reach.

• We expect that Theorems 1.1–1.3 can be extended to non-regular sparse random
graphs. We do not have a conjecture on how the function fd and the diffusion
constant θd modify in this more general setting.

1.5. Description of techniques. All our proofs are based on the classical notion of duality
between the voter model and a collection of coalescent random walks. In particular, on
time scales o(log n), i.e., below the typical distance between two vertices, the analysis can
be carried out by coupling a system of two random walks, starting at adjacent vertices
and evolving on the d-regular random graph, with two random walks on the d-regular
tree. Because the tree is regular, the distance of the two random walks can be viewed as
the distance to the origin of a single biased random walk on N0. Note that the same does
not hold when the tree is not regular.

Clearly, in order to analyse the process on time scales Θ(log n), i.e., on the typical dis-
tance between two vertices, the coupling argument must be combined with a finer control
of the two random walks on the regular random graph. To this aim, we exploit the strat-
egy developed in Cooper et al. (2010), which uses the so-called First Visit Time Lemma
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(see Theorem 2.2). Such control, together with a first-moment argument, is enough to
compute the evolution of the expected number of discordant on every time scale.

On the other hand, in order to obtain the concentration result in Theorem 1.3, a much
deeper analysis is required. Roughly, in order to have proper control on the correlations
between the edges constituting Dn

t , we must analyse a dual system of random walks
whose number grows with n. Exploiting a classical result by Aldous and Brown (1992),
we derive upper bounds for the number of meetings of a poly-logarithmic number of
independent random walks evolving on the random graph for a time n1−o(1). Such a
bound will be exploited in the forthcoming Proposition 5.1 to deduce an upper bound for
the deviation from the mean that is exponentially small in n and uniform in time. This
upper bound can in turn be translated to the result in Theorem 1.3 by taking a union
bound.

1.6. Outline. Section 2 lists definitions and notations, recalls the graphical construction
and duality, states a key lemma, and collects a few basic facts about regular random
graphs and random walks on such geometries. Theorems 1.1–1.3 are proved in Sections 3–
5, respectively. Appendix A contains two auxiliary facts for càdlàg processes.

2. NOTATION AND PREPARATION

In this section we properly introduce the voter model on general graphs, and collect
some results that will be needed along the way. In Section 2.1 we introduce the graphical
construction for the voter model and the associated dual process, known as coalescing
random walks. Section 2.2 contains the First Visit Time Lemma, which has been introduced
by Cooper and Frieze (2005). Section 2.3 collects some useful facts about the geometry of
d-regular random graphs and the behaviour of random walks on them. In what follows
we drop the upper index n to lighten the notation.

2.1. The voter model and coalescing random walks. Let G(V,E) be a connected (possi-
bly infinite and locally-finite) undirected graph. For each x ∈ V , let dx denote the degree
of vertex x. The voter model on G is defined as the interacting particle system with state
space {0, 1}V and generator L acting on local functions f : V → R as

(Lf)(η) =
∑
x∈V

∑
y∼x

1

dx

(
f(ηx←y)− f(η)

)
, η ∈ {0, 1}V ,

where ηx←y is obtained from η as

ηx←y(z) =

{
η(y), if z = x,

η(z), otherwise.

In this system, agents (represented by the vertices of G) start with binary opinions and
update these at rate one by copying the opinion of a uniformly chosen neighbour. For
t ≥ 0 and x ∈ V , denote by ηt(x) ∈ {0, 1} the opinion of vertex x at time t.

When G is finite and regular, i.e., dx = d for every x ∈ V , the number of vertices that
have opinion 1,

Bt =
∑
x∈V

ηt(x),
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is a martingale. Since Bt is bounded by |V |, it converges, which implies that the voter
model eventually fixates on a constant configuration, composed entirely of 0’s or 1’s, de-
noted by 0̄ and 1̄, respectively. Define the consensus time of G as the stopping time

τcons = inf
{
t ≥ 0: ηt ∈ {0̄, 1̄}

}
.

Let us next introduce the graphical construction of the voter model. Associate to every
oriented edge e⃗ = (x, y) a Poisson point process Pe⃗ on R with intensity 1/dx. When a
clock from e⃗ = (x, y) rings, vertex x receives the opinion of vertex y. This constriction
allows us to track the joint evolution of all the opinions via time duality. In order to
determine ηt(x), the state of a vertex x at time t, we start from the space time point (x, t),
and go backwards in time, crossing every clock ring from an edge that reaches the current
position of the path (see Figure 3).

t

−2 −1 0 1 2

Figure 3. The graphical construction of the voter model on the integer lattice Z.
The red path allows us to determine that ηt(1) is equal to η0(2).

The process that tracks the origin of the opinions can be viewed as a collection of coalesc-
ing random walks. To define this process we assume that G is finite and consider a family
{(Xv

t )t≥0}v∈V of independent rate-one continuous-time random walks such that Xv
0 = v

almost surely. In what follows we identify V with [n] = {1, . . . , n}. When two walks meet
at the same vertex they coalesce into a single walk (this can be seen immediately by the
graphical representation in 3.)

Because G is finite, any two independent random walks meet in finite time. Conse-
quently, τcoal, the first time at which all the random walks sit at the same vertex called
the coalescence time, satisfies τcoal < ∞ almost surely. In particular, the above mentioned
duality implies that τcons ≤ τcoal, and therefore any upper bound on the coalescence time
immediately yields an upper bound on the consensus time of the voter model.

Given x, y ∈ [n], let
τx,ymeet = inf{t ≥ 0: Xx

t = Xy
t } (2.1)

denote the meeting time of two independent continuous-time random walks starting from
x and y, respectively. More generally, if the two random walks are initialised randomly
and independently according to two distributions µ and ν on [n], then we denote their
meeting time by τµ⊗νmeet. We note that the extension to infinite graphs G follows from stan-
dard estimates on the probability that the process can be approximated by a finite dynam-
ics in finite portions of space during a bounded amount of time.
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2.2. The First Visit Time Lemma. In this section we state the First Visit Time Lemma
(FVTL), which was introduced by Cooper and Frieze (2005) and recently simplified by
Manzo et al. (2021). This lemma contains estimates on the time a random walk takes to
reach a distinguished site when starting from the stationary distribution.

Remark 2.1. Since the FVTL is defined in discrete time, in what follows it will be easier
to derive the results in discrete time and then translate them to continuous time. For
this reason, when considering two random walks in discrete time, where at each step the
random walk that moves is selected uniformly at random, we use the notation Pdt to refer
to their law.

Theorem 2.2 (First Visit Time Lemma; Manzo et al. (2021)). Consider a sequence of ergodic
Markov chains labelled by N ∈ N, living on a finite state space ΩN of size N , with transition
matrix QN and stationary distribution µN and a target state x ∈ ΩN . Define

T
(N)
mix = inf

{
t ≥ 0: max

x,y∈ΩN

|Qt
N(x, y)− µN(y)| ≤

1

N3

}
, (2.2)

and assume that
(1) limN→∞N2minx∈ΩN

µN(x) = ∞.
(2) limN→∞ T

(N)
mix maxx∈ΩN

µN(x) = 0.
(3) There exists a unique quasi-stationary distribution associated to x, i.e., for all N large

enough the sub-matrix [QN ]x in which the row and column have been erased is irre-
ducible. See also (Quattropani and Sau, 2022, Remark 3.2 and Section 4.4).

Then there exists a sequence (λ(N)
x )N∈N such that

lim
N→∞

∣∣∣∣∣ λ(N)
x

µN (x)
RN (x)

− 1

∣∣∣∣∣ = 0, RN(x) :=

T
(N)
mix∑
s=0

Qs
N(x, x),

and

lim
N→∞

sup
t≥0

∣∣∣∣∣PµN
(τx > t)

(1− λ
(N)
x )t

− 1

∣∣∣∣∣ = 0,

with PµN
the path measure of the Markov chain starting from µN .

In words, the FVTL states that, under the assumptions, the hitting time of a state x
is well approximated by a geometric (exponential, in continuous time) random variable
with mean R(x)

µ(x)
.

2.3. The geometry of regular random graphs. In this section we collect a number of def-
initions and asymptotic results about the typical geometry of regular random graphs. We
start by introducing notation and conclude by stating some basic facts regarding typical
d-regular random graphs.

Given a connected graph G = (V,E) and two vertices x, y ∈ V , we denote by dist(x, y)
the distance between x and y, given by the number of edges of the shortest path joining
x and y. For a vertex x ∈ V and a radius h ≥ 1, we denote by Bx(h) the ball of radius h
centered at x, seen as a subgraph of G. The tree excess of a graph quantifies how far away
from a tree a given connected graph is.
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Definition 2.3 (Tree excess). Given a connected graph G = (V,E), the tree excess of G,
denoted by tx(G), is the minimum number of edges that must be removed from G in
order to obtain a tree. This can also be written as

tx(G) = |V | − |E| − 1.

Next, we introduce the notion of locally tree-like vertices and edges.

Definition 2.4 (Locally tree-like vertex). Given a graph G = (V,E), we say that a vertex
x ∈ V is locally tree-like up to distance ℓ ≥ 1, denoted by x ∈ LTL(ℓ), if the subgraph
induced by the vertices at distance at most ℓ from x, i.e., Bx(ℓ), is a tree.

Definition 2.5 (Locally tree-like edge). Given a graph G = (V,E) and an edge e ∈ E, we
say that e = {x, y} is locally tree-like up to distance ℓ ≥ 1, denoted by e ∈ LTLE(ℓ), if the
subgraph induced by the vertices at distance at most ℓ from x or y, i.e., Bx(ℓ)∪By(ℓ), after
removal of the edge e, is composed of two disjoint trees of depth at most ℓ.

For d ≥ 3 and n > d such that nd is even, there exists at least one graph with n vertices
and constant degree equal to d. In particular, for this range of parameters the d-regular
random graph of size n, drawn from the uniform distribution on the set of all graphs
with n vertices and constant degree equal to d, is well defined. Denote by m = dn/2 the
number of edges of this random graph. The following proposition collects properties of
the d-regular random graph that will be needed in the rest of the paper.

Proposition 2.6 (Geometry of regular random graphs and random walks; Lubetzky and
Sly (2010)). Fix d ≥ 3, and let Gd,n(ω) denote the d-regular random graph of size n. Then, whp,

(i) G is connected.
(ii) For every x ∈ [n], tx(Bx(

1
5
logd n)) ≤ 1.

(iii) |LTLE(1
5
logd n)| = m− o(n).

(iv) There exists a constant C = Cd > 1 such that for t = C log n and for every ε > 0,

dTV(t) := max
x∈[n]

∥P t(x, ·)− π∥TV ≤ ε. (2.3)

In particular, for tn such that lim
n→∞

log n/tn = 0, then lim
n→∞

dTV(tn) = 0.

3. COMPUTATION OF THE EXPECTATION

In this section we prove Theorem 1.1, in particular, we provide a whp first-order esti-
mate of the expected density of discordant edges at time t = tn, for every choice of the
sequence (tn)n∈N. In Section 3.1 we collect some basic results for the voter model on the
infinite d-regular tree Td, the local approximation of the d-regular random graph. We show
that the density of discordant edges at time t on Td with Ber(u) initialisation behaves as
2u(1 − u)(1 − f(t)). This will be done by exploiting duality: we reduce the problem to
the analysis of a pair of coalescing random walks starting at the two extremes of an edge
of the tree. In Section 3.2 we show that a classical coupling argument suffices to show
that the approximation holds for every sequence t = (tn)n∈N such that t/ log n → 0. When
t starts to become comparable with the typical distance of the graph, i.e., tn = Θ(log n),
the coupling argument fails and we need a refined analysis of the process to compute the
expected density. This scenario will be handled in Section 3.3. The idea is to track a pair of
random walks starting from the two extremes of a typical (hence, locally tree-like) edge up
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to their first meeting. Using the First Visit Time Lemma, we show that, under the event
that the two random walks do not meet after a short time, the time of their first meeting
is well approximated by exponential random variable with rate θ−1d n.

3.1. Discordant edges on the regular tree. Let Td denote the infinite d-regular tree with
d ≥ 3. Our first lemma concerns the probability that two independent random walks,
starting at distance one from each other, do not meet within a time t. Recall that PTd

denotes the law of two independent random walks starting from then endvertices of an
edge in Td.

Lemma 3.1 (Meeting on a regular tree). Let x, y ∈ Td with dist(x, y) = 1. Then

fd(t) = PTd
(
τx,ymeet ≤ t

)
=
∞∑
κ=0

e−2t
(2t)κ

κ!

⌊κ−1
2
⌋∑

s=0

(
2s

s

)
1

s+ 1

(1
d

)s+1(d− 1

d

)s
. (3.1)

From this it follows that

PTd(τx,ymeet = ∞) =
d− 2

d− 1
= θd. (3.2)

Proof. Let (Xt)t≥0 and (Yt)t≥0 be two independent continuous-time random walks starting
from x ∼ y, respectively. Put Zt = dist(Xt, Yt) and note that (Zt)t≥0 is a continuous-time
biased random walk on N0 that starts at 1, jumps at rate 2, and has jump distribution
given by

p(z, z + 1) = 1− p(z, z − 1) =
d− 1

d
, z ∈ N. (3.3)

The claim in (3.1) follows from the construction of the random walk (Zt)t≥0 via a Poisson
process of rate 2 for the jump times, together with a skeleton chain given by the discrete-
time biased random walk with jump distribution given by (3.3), and explicit expressions
for hitting times of discrete-time random walks based on path-counting arguments.

To get (3.2) it is enough to note that, by the standard Gambler’s ruin argument,

PTd
(
τx,ymeet < ∞

)
= P

(
Zt = 0 for some t ≥ 0 | Z0 = 1

)
=

p(0,−1)

p(0, 1)
=

1

d− 1
,

from which the claim follows. □

Remark 3.2. Note that (3.2) can be derived from (3.1) by direct computation. Indeed,
clearly f(0) = 0. The generating function c(x) =

∑∞
k=0 Ckx

k for the Catalan numbers
Ck =

(
2k
k

)
1

k+1
solves the quadratic equation c(x) = 1 + xc(x)2. Since C0 = 1, we have

c(x) =
[1−

√
1− 4x ]

2x
.

It follows that

f(∞) =
1

d
c

(
d− 1

d2

)
=

1

d

[
1− d−2

d

]
2 d−1

d2

=
1

d− 1
= 1− θd.

Lemma 3.3 (Density of discordant edges). Consider the voter model on Td with initial density
u. Then, for any given edge e and any time t ≥ 0,

PTdu
(
e ∈ Dt

)
= 2u(1− u)(1− fd(t)),

12



where fd(t) is given by (3.1).

Proof. Put e = {x, y}. Note that in order to have e ∈ Dt, by duality, the (backward) random
walks starting from x and y at time t do not coalesce before time 0 and end up at vertices
with distinct initial opinions. The initial opinions are independent of the trajectories of
these random walks. The claim follows by noting that 1− fd(t) is the probability that the
two random walks do not meet in time t, and 2u(1−u) is the probability that two distinct
vertices have different initial opinions. □

3.2. Expectation for small times. We start this section with a general bound that does not
require the graph G to be random nor the size of G to grow to infinity.

Lemma 3.4 (Discordant LTLEs). Let G = (V,E) be any d-regular graph and let e = {x, y} ∈ E
be LTLE(ℓ) for some ℓ. Consider the voter model on G with initial density u. Then, for any time
T > 0,

sup
t∈[0,T ]

|Pu(e ∈ Dt)− 2u(1− u)(1− fd(t))| ≤
4T

ℓ
.

Proof. Note first that the term 2u(1 − u)(1 − fd(t)) corresponds to the probability that a
given edge in Td is discordant at time t. In particular, if we consider the dual system
with coalescing random walks, then the probabilities we are interested in are the same,
provided the random walks do not leave the tree-like neighbourhood of e. Therefore
consider the event

ET =
{

the number of jumps the random walks perform before time T is bounded by ℓ
}
,

and observe that, by the Markov inequality,

P
(
Ec
T

)
= PTd

(
Ec
T

)
≤ PTd

(
X ≥ ℓ

)
≤ 2T

ℓ
,

where X ∼ Poisson(2T ) stochastically dominates the number of jumps that both random
walks make up to time T . By construction, for t ≤ T we can write

Pu

(
e ∈ Dt, ET

)
= PTdu

(
e ∈ Dt, ET

)
,

from which we can estimate

|Pu(e ∈ Dt)− 2u(1− u)(1− fd(t))| =
∣∣∣Pu

(
e ∈ Dt

)
−PTdu

(
e ∈ Dt

)∣∣∣
≤
∣∣∣Pu

(
e ∈ Dt, ET

)
−PTdu

(
e ∈ Dt, ET

)∣∣∣+ 2PTd
(
Ec
T

)
≤ 4T

ℓ
,

which settles the claim. □

Proposition 3.5 (Short time average). Consider the voter model on a regular random graph
Gd,n(ω) with initial density u ∈ (0, 1). Then, for any time tn satisfying tn/ log n → 0,

|Eu[Dtn ]− 2u(1− u)(1− fd(tn))|
P−→ 0. (3.4)

Proof. Note that for every realisation of G,

Eu[|Dtn|] =
∑
e∈E

Pu(e ∈ Dn
tn).

13



Call E⋆ ⊂ E the set of LTLE
(
1
5
logd n

)
edges. Then, by Lemma 3.4 and our assumption on

tn, ∣∣∣Eu[Dtn ]− 2u(1− u)(1− fd(tn))
∣∣ ≤ ∣∣∣ 1

m

∑
e∈E

Pu

(
e ∈ Dt

)
− 2u(1− u)(1− fd(tn))

∣∣∣
≤ 1

m

∑
e∈E⋆

4tn
1
5
logd n

+
1

m
|Ec

⋆|
P−→ 0,

where the last convergence follows from Proposition 2.6(iii). □

3.3. Expectation for long times. In this section we show how the behaviour in Proposi-
tion 3.5 can be extended up to the linear time scale. Clearly, we need a different argument,
since we can no longer assume that the dual random walks starting at the extremes of a lo-
cally tree-like edge do not exit their neighbourhood of size 1

5
logd(n). In order to proceed,

we adapt the arguments in (Cooper et al., 2010, Lemmas 17 and 20) to our framework,
which will constitute a crucial tool for our analysis. In what follows, we fix

σn = ⌈(log log n)2⌉. (3.5)

The following lemma says that whp for every pair of starting vertices that are more than σn

apart the probability that the two random walks meet before time log3 n is exponentially
small in σn.

Lemma 3.6 (Meeting time of distant random walks). Let Gd,n(ω) be a regular random graph.
Then there exists a constant c0 > 0 such that

1

{
max

x,y : dist(x,y)>σn

P
(
τx,ymeet ≤ log3 n

)
≤ e−c0σn

}
P−→ 1.

Proof. The proof comes in several steps.

1. Consider two independent random walks (Xt)t≥0 and (Yt)t≥0 that start from x and
y, respectively. The number of steps each random walk performs before time log3 n has
distribution Poisson(log3 n). In particular, Markov’s inequality with exponential moments
implies that, for λ = log log n,

P

(
Xt or Yt performs more than log4 n steps before time log3 n

)
≤ 2e−λ log4 n exp

{
(eλ − 1) log3 n

}
= 2 exp

{
(eλ − 1) log3 n− λ log4 n

}
= 2 exp

{
(log n− 1− log log n log n) log3 n

}
≤ e−c0σn ,

provided n is large enough. We can consider only the case where X and Y perform
discrete-time random walks in which at every step one of the random walks is selected
uniformly at random to move. We then just need to verify that whp

Pdt
(
τx,ymeet ≤ 2 log4 n

)
≤ e−c0σn ,

uniformly over the pairs x and y that are at least σn apart.

2. Let Zt denote the graph distance of Xt and Yt at time t. Note that Z0 ≥ σn, and
Zt+1−Zt ∈ {−1, 0, 1} for every t ≥ 0 (the case Zt+1−Zt = 0 corresponds to jumps like the
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X

Y

Figure 4. In a general d-regular graph the potential existence of cycles of length 3
allows the distance between the two random walks to remain constant after 1 step.
In the picture, if Y moves along the blue arrow, then it remains at distance 1 to X .

one in Figure 4). This implies that the random walks cannot meet before time σn. Recall
from Proposition 2.6 that whp

tx(B2σn(v)) ≤ 1, for all v ∈ V.

It is now enough to show that

qn = Pdt
(
τx,ymeet ∈

{
σn, . . . , 2 log

4 n
})

≤ 4 log8 ne−2c0σn ≤ e−c0σn ,

for some positive c0 and all n large enough. Put ρ = max{t ≤ τx,ymeet : Zt ≥ σn}. We rewrite
the probability of interest as

qn ≤ 2 log4 n max
r≤2 log4 n

Pdt
(
τx,ymeet ≤ 2 log4 n, ρ = r

)
.

We aim at providing bounds on the above probability that are uniform in r ≤ 2 log4 n. To
that end, consider the ball of radius 2σn around Xρ, which by assumption satisfies

tx(B2σn(Xρ)) ≤ 1.

We distinguish between two cases: (1) the quantity above is 0 (and thus B2σn(Xρ) is a tree);
(2) the tree excess of B2σn(Xρ) is 1.

3. First, consider the case when B2σn(Xρ) is a tree. Call p the unique path joining Xρ and Yρ

within the tree, and recall that |p| = dist(Xρ, Yρ) = σn. Let us argue that at least one of the
random walks does σn/2 steps along p. Indeed, suppose first that for all t ∈ {ρ, . . . , τx,ymeet}
neither Xt nor Yt leaves the tree B2σn(Xρ). In order for the two random walks to meet, they
need to jointly traverse the path p. If, on the other hand, one of the two random walks
leaves B2σn(Xρ), then our claim is met by the definition of ρ. Here, note that when we say
that the first/second random walk must have made σn/2 steps along p, we do not require
that the steps are made consecutively. Nonetheless, under {ρ = r}, requiring that at least
one of the two random walks does σn/2 steps along p within time 2 log4 n is equivalent to
requiring that

τ̂r = inf{u ≥ r : dist(Xu, Yr) ∧ dist(Xr, Yu) ≤ σn

2
}

satisfies τ̂r ≤ 2 log4 n. We can now bound, uniformly in r ≤ 2 log4 n,

Pdt
(
τx,ymeet ≤ 2 log4 n, ρ = r

)
≤ Pdt

(
τ̂r ≤ 2 log4 n, ρ = r

)
≤ 2P

(
τabs ≤ 2 log4 n

)
,

15



where τabs is the absorption time at the origin of a biased random walk on Z, and (Wu)u≥0
is such that W0 = σn/2 and

p = P
(
Wt+1 −Wt = 1

)
= 1− P

(
Wt+1 −Wt = −1

)
=

d− 1

d
.

Hence, by the classical Gambler’s ruin argument,

P
(
τabs ≤ 2 log4 n

)
≤ P

(
τabs < ∞

)
=
(1− p

p

)σn/2

=
( 1

d− 1

)σn/2

≤ 2−
σn
2 . (3.6)

The claim follows by choosing c0 ≤ log 2
5

.

Xρ

Yρ

Xρ

Yρ

Xρ

Yρ

Xρ

Yρ

zκ

Figure 5. A sketch of the 4 possible ways the two paths p and p̃ described below
can look like.

Yρ

Xρ

Yρ

Xρ

Figure 6. On the left |p̃| = |p|+ 1, on the right |p̃| = |p|.

4. Next, consider the case when tx(B2σn(Xρ)) = 1. Then there are at most two paths
joining Yρ to Xρ in B2σn(Xρ) (see Figure 5). Call these two paths p = (z0 = Yρ, z1, . . . , zσn =
Xρ) and p̃ = (z̃0 = Yρ, z̃1, . . . , z̃ℓ = Xρ), with σn ≤ ℓ ≤ 3σn+1 (the case ℓ = σn is exemplified
in Figure 6). Let κ denote the index of the last vertex such that the paths coincide, i.e.,

κ = sup
{
i ≤ σn : zi = z̃i

}
.

We split the two paths as p = (pκ, p
′) and p̃ = (pκ, p

′′), where pκ = (z0, z1, . . . , zκ). If
κ ≥ 1

2
σn, then the argument from the previous paragraph can be easily adapted as follows.

We first note that, in order for the random walks to meet, either Y or X must reach z 1
2
κ.

If Y is the random walk that reaches this vertex, then the comparison with the birth-and-
death chain is done in the same way as before. If the random walk that reaches z 1

2
κ is X ,
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then we still need to account for the time it takes X to arrive at zκ, which can be taken
care of via a union bound, yielding an additional factor 2 log4 n in the calculation. More
precisely, consider the random variables

τ̃ 1r = inf{u ≥ r : Xu = z 1
2
κ}, τ̃ 2r = inf{u ≥ r : Yu = z 1

2
κ}.

We can bound

Pdt
(
τx,ymeet ≤ 2 log4 n, ρ = r

)
≤ Pdt

(
τ̃ 1r ∧ τ̃ 2r ≤ 2 log4 n, ρ = r

)
≤ Pdt

(
τ̃ 1r ≤ 2 log4 n, ρ = r

)
+Pdt

(
τ̃ 2r ≤ 2 log4 n, ρ = r

)
≤ P

(
τabs ≤ 2 log4 n

)
+

2 log4 n∑
i=1

P
(
τabs ≤ log4 n− i

)
≤ (log4 n+ 1)2−

σn
4 .

For the bound in the second line, the first term follows an analogous reasoning as in the
tree case. To handle the second term, we first apply union bounds on the first time the
random walk X reaches zκ, and the result follows from the strong Markov property and
the same argument as in the tree case. Conversely, if κ ≤ 1

2
σn, then both p′ and p′′ are long

paths (of size at least 1
2
σn). Once again, in order for the random walks to meet, at least

one of them must traverse at least half of one of the paths p′ or p′′. The argument follows
the same lines as in the previous case, and we refrain from spelling out the details. □

Proposition 3.7 (Exponential scaling of meeting time starting in stationarity). Let Gd,n(ω)

be a regular random graph. There exists a sequence of random variables Θd = (Θ
(n)
d )n∈N such that

sup
t≥0

∣∣∣∣∣P(τπ⊗πmeet > t)

exp
(
−2 Θd t

n

) − 1

∣∣∣∣∣ P−→ 0 , (3.7)

and
Θ

(n)
d

P−→ θd =
d− 2

d− 1
.

Proof. We show that for the discrete-time version of the process, in which at each time
step one randomly chosen walk performs a jump, we have

sup
t≥0

∣∣∣∣∣Pdt(τπ⊗πmeet > t)(
1− Θd

n

)t − 1

∣∣∣∣∣ P−→ 0. (3.8)

The claim in (3.7) follows by Poissonisation. For the discrete-time process we can exploit
the full power of the FVTL in Theorem 2.2. The proof comes in several steps.

1. Consider the multi-graph Γ with vertex set VΓ = {(x, y) : x, y ∈ [n], x ̸= y}∪{∆}, where
∆ is the merge of the vertices on the diagonal that retains the edges. More precisely,

((x, y), (v, w)) ∈ EΓ if and only if

{
x = v and (y, w) ∈ E,

y = w and (x, v) ∈ E,

and
(∆, (v, w)) ∈ EΓ if and only if (v, w) ∈ E,
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with each edge adjacent to ∆ having multiplicity 2. Roughly, Γ is such that every vertex
except ∆ has degree 2d, while ∆ has degree 4m = 2dn. It follows that the sum of the
degrees in Γ equals 2mΓ = 2dn(n − 1) + 2dn = 2dn2, and that the number of vertices
is given by N = n2 − n + 1. Throughout this proof, let P denote the distribution of the
simple random walk on Γ, PΓ the associated transition matrix, and VΓ the set of vertices.
The stationary distribution for this random walk πΓ is given by

πΓ(∆) =
1

n
,

while, for all (x, y) with x ̸= y,

πΓ(x, y) =
1

n2
.

2. Concerning the mixing time in (2.2), it is not hard to show that we can choose Tmix =
log2 n. For completeness, we provide a full proof by adapting the proof of (Cooper et al.,
2010, Lemma 12) to our asynchronous setting. As shown in Friedman (2008), the sec-
ond largest eigenvalue of P , denoted by λ⋆, is bounded away from 1 whp, from which
it follows via (Levin and Peres, 2017, Corollary 12.13) that the same holds for the matrix
P⊗2 = 1

2
(P ⊗ I + I ⊗ P ). Write λ⊗2 (respectively, λΓ) to denote the spectral gap of the

matrix P⊗2 (respectively, PΓ). By (Levin and Peres, 2017, Theorem 13.10) and with the
abbreviation

Φ⊗2 := min
S⊂V 2 : π⊗2(S)≤ 1

2

∑
x∈S π(x)

∑
y∈Sc P⊗2(x,y)

π⊗2(S)
(3.9)

for the conductance of the product chain, we know that
1
2
Φ2
⊗2 ≤ 1− λ⊗2 ≤ 2Φ⊗2. (3.10)

Therefore Φ⊗2 is bounded away from 0 whp. By the construction of Γ, we must have
Φ⊗2 ≤ ΦΓ, where the latter is the conductance of the Markov chain PΓ. Indeed, the graph Γ
is constructed from G×G by contracting some vertices and retaining the edges. Moreover,
again by (3.10) to the Markov chain PΓ,

1− λΓ ≥ 1
2
Φ2

Γ ≥ 1
2
Φ2
⊗2 > 0. (3.11)

Hence, we deduce that λΓ must be bounded away from 1 whp. Finally, by (Levin and
Peres, 2017, Theorem 12.4), we conclude that O(log n) steps suffice to get (2.2).

3. Thus, Assumptions (1) and (3) in Theorem 2.2 are satisfied whp with N = n2 − n + 1,
QN = PΓ, µN = πΓ. Moreover, choosing x = ∆ we easily check the whp existence of a
unique quasi-stationary distribution, thanks to the fact that d ≥ 3, G is connected, and
the two random walks move asynchronously. In order to use the FVTL, we are left to
compute the expected number of returns to ∆ before time Tmix ≤ log2 n, starting at ∆. For
t ≥ 1, put

Rt(∆) =
t∑

s=0

P
(
Xs = ∆ | X0 = ∆

)
.

We will show that
RTmix

(∆)
P−→ 1 +

1− θd
θd

=
1

θd
=

d− 1

d− 2
. (3.12)

The term 1 comes from the fact that the random walk starts at ∆.
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4. We start by giving the heuristics of the proof. Call (x, y) the vertex of Γ visited at time
1. By Proposition 2.6(ii), the probability that the edge e = (x, y) ∈ E is LTLE(1

5
logd n

)
is 1 − o(1). On this event, the probability that there will be a second visit to ∆ before
Tmix is upper bounded by 1

d−1 . A simple combination of these arguments yields an upper
bound. As for the lower bound, the probability that the random walk on Γ starting at
(x, y) reaches a vertex (v, w) with distG(v, w) ≥ σn before reaching ∆ is θd + o(1). Once at
(v, w), the probability that the random walk visits ∆ before Tmix is o(1). Hence, up to o(1)
corrections, RTmix

(∆) can be estimated by the expectation of a geometric random variable
with parameter θd + o(1), representing the first excursion of the random walk that hits
(v, w) with distG(v, w) ≥ σn before returning to ∆. 5. With this heuristics in mind, we are

ready to provide the proof of (3.12). We will do so by first assuming that

P
(
1
5
logd n ≤ τ+∆ ≤ Tmix | X0 = ∆

) P−→ 0 (3.13)

and
P
(
τ+∆ ≤ 1

5
logd n | X0 = ∆

) P−→ 1− θd. (3.14)
Write

RTmix
(∆) = 1 +

Tmix∑
s=1

P
(
Xs = ∆ | X0 = ∆

)
= 1 +

Tmix∑
r=1

Tmix∑
s=r

P
(
Xs = ∆, τ+∆ = r | X0 = ∆

)
= 1 +

Tmix∑
r=1

Tmix∑
s=r

P
(
Xs = ∆ | Xr = ∆

)
P
(
τ+∆ = r | X0 = ∆

)
= 1 +

Tmix∑
r=1

P
(
τ+∆ = r | X0 = ∆

) Tmix−r∑
s=0

P
(
Xs = ∆ | X0 = ∆

)
= 1 +

Tmix∑
r=1

P
(
τ+∆ = r | X0 = ∆

)
RTmix−r(∆).

(3.15)

To establish the upper bound in (3.12), observe that (3.15) yields

RTmix
(∆) ≤ 1 + P

(
τ+∆ ≤ Tmix | X0 = ∆

)
RTmix

(∆),

which yields

RTmix
(∆) ≤

(
1− P

(
τ+∆ ≤ Tmix | X0 = ∆

))−1
,

and the claim follows by combining (3.13) and (3.14).

6. To establish the lower bound in (3.12), observe that (3.15) yields

RTmix
(∆) ≥ 1 +

1
5
logd n∑
r=1

P
(
τ+∆ = r | X0 = ∆

)
RTmix−r(∆)

≥ 1 + P
(
τ+∆ ≤ 1

5
logd n | X0 = ∆

)
R

Tmix−
1
5
logd n

(∆).
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By iterating the estimate above, we obtain

RTmix
(∆) ≥

5Tmix/ logd n∑
i=0

P
(
τ+∆ ≤ 1

5
logd n | X0 = ∆

)i
=

1

θd
− oP(1), (3.16)

where the last equality follows from (3.14). This concludes the verification of the hypothe-
ses of Theorem 2.2.

To conclude the proof, we still need to verify (3.13) and (3.14). We start with (3.13). By
Proposition 2.6(iii), we have

P
(
X1 ∈ LTLE

(
1
5
logd n

)
| X0 = ∆

) P−→ 1. (3.17)

Indeed, by construction, the random walk on Γ starting at ∆ after a single step visits a
(x, y) ∈ E uniformly at random. Assume that X1 = (x, y) ∈ LTLE

(
1
5
logd n

)
, and let τ̃

denote the first time at which the process on Γ is found at some (w, z) with distG(w, z) =
σn. Then, up to time τ∆∧ τ̃ , the random walk (Xt)t≥1 can be coupled with a biased random
walk on Z (given by the distance between the two vertices) that starts from 1, jumps to
the right (respectively, left) with probability d−1

d
(respectively, 1

d
). Call this random walk

(Wt)t≥0, and let τj , j ∈ Z, be its first hitting of j. Then a gambler’s ruin argument yields

E1

(
τ0 ∧ τσn

)
≤ dσn

d− 2
,

which implies

P1

(
τ0 ∧ τσn > 1

5
logd n− 1

)
≤ P1

(
τ0 ∧ τσn > σ3

n

)
≤ 1

σn

(3.18)

for all n sufficiently large. Compute

P
(
τ+∆ ∧ τ̃ ≤ 1

5
logd n | X0 = ∆

)
≥

∑
(x,y)∈(VΓ\{∆})∩LTLE

(
1
5
logd n

)P∆

(
X1 = (x, y)

)
P(x,y)

(
τ+∆ ∧ τ̃ ≤ 1

5
logd n− 1

)
(3.18)
≥
(
1− 1

σn

)
P
(
X1 ∈ LTLE

(
1
5
logd n

)
| X0 = ∆

)
.

Note that the last line above converges to 1 in probability as n → ∞ (see (3.17)), which
concludes the verification of (3.13).

We are left with proving (3.14). In this case, we can assume once again that X1 ∈
LTLE(1

5
logd n), which in particular implies that, up to time 1

5
logd n, the random walk can

be perfectly coupled with a biased random walk on Z that starts at 1 and jumps to the
right (respectively, left) with probability d−1

d
(respectively, 1

d
). The claim follows by noting

that

P
(
τ+∆ ≤ 1

5
logd n | X0 = ∆

)
= oP(1) + P1

(
τ0 ≤ 1

5
logd n− 1

)
= oP(1) + P1

(
τ0 < ∞

)
= o(1) +

1

d− 1
,

which concludes the verification of (3.14). □
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Lemma 3.8 (Tail of meeting time of distant random walks). Let Gd,n(ω) be a regular random
graph and consider two independent random walks. Then

max
x,y : dist(x,y)≥σn

sup
t≥0

∣∣∣P(τx,ymeet > t
)
− e−

2tθd
n

∣∣∣ P−→ 0. (3.19)

Proof. We need to deduce from Proposition 3.7 an (additive) analogous result when the
two random walks start far away. For that we use Lemma 3.6.

For simplicity we work again in discrete time, so that what we actually need to show is

max
x,y : dist(x,y)≥σn

max
t≥0

∣∣∣∣Pdt(τx,ymeet > t)−
(
1− θd

n

)t∣∣∣∣ P−→ 0. (3.20)

Fix x and y such that dist(x, y) ≥ σn, and let E be the event that the two random walks
meet before the mixing time Tmix. Since Tmix ≤ log3 n, Lemma 3.6 states that P(E) ≤ e−c0σn

whp for every pair (x, y) as above. Hence, if t ≤ Tmix, then

min
x,y : dist(x,y)≥σn

Pdt
(
τx,ymeet > t

)
≥ 1− e−c0σn . (3.21)

On the other hand, if t > Tmix, then by definition of Tmix,

max
(x,y)∈VΓ

|P
(
Xx

t = v, Y y
t = w

)
− πΓ(v, w)| ≤

1

n6
. (3.22)

Therefore

Pdt
(
τx,ymeet > t

)
=

∑
(v,w)∈VΓ\{∆}

P
(
τ
(x,y)
∆ > Tmix, X

x
Tmix

= v, Y y
Tmix

= w
)
P
(
τ
(v,w)
∆ > t− Tmix

)
≤

∑
(v,w)∈VΓ\{∆}

P
(
Xx

Tmix
= v, Y y

Tmix
= w

)
P
(
τ
(v,w)
∆ > t− Tmix

)
≤

∑
(v,w)∈VΓ\{∆}

πΓ(v, w)P
(
τ
(v,w)
∆ > t− Tmix

)
+

1

n6

≤ P
(
τπΓ
∆ > t− Tmix

)
+

1

n4
.

On the other hand,

Pdt
(
τx,ymeet > t

)
=

∑
(v,w)∈VΓ\∆

P
(
τ
(x,y)
∆ > Tmix, X

x
Tmix

= v, Y y
Tmix

= w
)
P
(
τ
(v,w)
∆ > t− Tmix

)

≥

 ∑
(v,w)∈VΓ\{∆}

P
(
Xx

Tmix
= v, Y y

Tmix
= w

)
P
(
τ
(v,w)
∆ > t− Tmix

)− P
(
τx,ymeet ≤ Tmix

)
(3.22)
≥

∑
(v,w)∈VΓ\{∆}

πΓ(v, w)P
(
τ
(v,w)
∆ > t− Tmix

)
− 1

n6
− P

(
τx,ymeet ≤ Tmix

)
(3.21)
= P

(
τπΓ
∆ > t− Tmix

)
− 1

n4
− e−c0σn .

21



This, when combined with Propostition 3.7, implies the claim because

∣∣∣(1− θd
n

)t
−
(
1− θd

n

)t−Tmix
∣∣∣ = (1− θd

n

)t∣∣∣1− (1− θd
n

)−Tmix
∣∣∣ ≤ e−

tθd
n

∣∣∣1− (1− θd
n

)−Tmix
∣∣∣

converges to zero as n → ∞, uniformly in t ≥ 0. □

Proposition 3.9 (Tail of meeting time of adjacent random walks on a LTLE). Let Gd,n(ω)
be a regular random graph, let e = (x, y) be in LTLE

(
1
5
logd n

)
, and consider two independent

random walks starting from the endvertices of e. Then, for all tn such that limn→∞ tn = ∞ and
limn→∞ tn/n = s ≥ 0, ∣∣∣P(τx,ymeet > tn)− θd e

−2sθd
∣∣∣ P−→ 0.

Proof. Note that it is enough to assume that t ≥ σ3
n, since otherwise the claim follows from

Lemma 3.4. Let τx,yfar be the first time at which the two random walks are at distance at least
σn, and τx,yexit the first time at which one of the two random walks exits the locally tree-like
neighbourhood of radius 1

5
logd n of e. Put τx,y0 = τx,ymeet ∧ τx,yfar ∧ τx,yexit. For simplicity, we start

by analysing the discrete-time process. Up to time τx,y0 , the process can be coupled to a
biased random walk (Wt)t≥0 with W0 = 1 and

p = P
(
Wt+1 −Wt = 1

)
= 1− P

(
Wt+1 −Wt = −1

)
=

d− 1

d
.

In particular,

Edt
[
τx,y0

]
≤ dσn

d− 2
,

and therefore

Pdt
(
τx,y0 = τx,yexit

)
≤ Pdt

(
τx,yexit ≤ σ3

n

)
+Pdt

(
τx,y0 > σ3

n

)
≤ 0 +

1

σ3
n

dσn

d− 2
= o(1),

(3.23)

where the last term follows from the Markov inequality. Similarly, by a gambler ruin
argument,

Pdt
(
τx,yfar > σ3

n

)
= o(1),

and therefore

P
(
τx,ymeet > tn

)
= P

(
τx,ymeet > tn, τ

x,y
0 = τx,yfar ≤ σ3

n

)
+ o(1). (3.24)
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The probability in the right-hand side of (3.24) can be written, in the discrete-time set-
ting, as

Pdt
(
τx,ymeet > tn, τ

x,y
0 = τx,yfar ≤ σ3

n

)
=

σ3
n∑

u=0

∑
(v,w) : dist(v,w)>σn

Pdt(τx,y0 = τx,yfar = u, (Xτx,y0
, Yτx,y0

) = (v, w))P(τ v,wmeet > tn − u)

∼
σ3
n∑

u=0

∑
(v,w) : dist(v,w)>σn

Pdt(τx,y0 = τx,yfar = u, (Xτx,y0
, Yτx,y0

) = (v, w))

(
1− θd

n

)tn−u

=

(
1− θd

n

)tn σ3
n∑

u=0

Pdt(τx,y0 = τx,yfar = u)

(
1− θd

n

)−u

∼
(
1− θd

n

)tn σ3
n∑

u=0

Pdt(τx,y0 = τx,yfar = u) ∼ e−sθdPdt(τx,y0 = τx,yfar ≤ σ3
n) ∼ θd e

−sθd whp.

In order to pass to the continuous-time setting, it is enough to realise that, for all ε ∈ (0, s),

P
(
τx,ymeet > tn

)
=
∞∑
u=0

P (Poisson(2tn) = u)Pdt
(
τx,ymeet > u

)
=

2(s+ε)n∑
u=2(s−ε)n∨0

P (Poisson(2sn) = u)Pdt
(
τx,ymeet > u

)
+ oP(1)

= θd e
−2sθd +OP(ε),

after which the claim follows by taking the limit ε ↓ 0. □

The next two statements turn the result in Proposition 3.9 into a statement about the
expected density of discordant edges at time O(n) for the voter model.

Corollary 3.10 (Discordant edges at small distances). Let Gd,n(ω) be a d-regular random
graph, let e = (x, y) be in LTLE(1

5
logd n), and consider the voter model with initial density

u ∈ (0, 1). Then, for all tn such that limn→∞ tn = ∞ and limn→∞ tn/n = s ∈ [0,∞),∣∣∣Pu

(
e ∈ Dtn

)
− 2u(1− u) θd e

−2sθd
∣∣∣ P−→ 0.

Proof. The claim follows from Proposition 3.9 via duality. □

Proposition 3.11 (Expected density of discordant edges). Let Gd,n(ω) be a d-regular random
graph, and consider the voter model with initial density u ∈ (0, 1). Then, for all tn such that
limn→∞ tn/n = s ∈ [0,∞), ∣∣∣Eu[Dtn ]− 2u(1− u) θd e

−2sθd
∣∣∣ P−→ 0.

Proof. The claim follows from Corollary 3.10 and the same argument as in the proof of
Proposition 3.5. □
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4. BEYOND THE EXPECTATION

In this section we prove Theorem 1.2. We start with a proposition that implies the first
statement of the theorem.

Proposition 4.1 (Concentration for worst case initialization). Consider times tn such that
tn → ∞ and tn/n → 0. Then, for any ε > 0,

sup
ξ∈{0,1}V

Pξ (|Dtn − Eξ [Dtn ]| > ε)
P−→ 0.

Proof. Putting E⋆ = LTLE(1
5
logd n) ⊂ E and recalling that |E⋆| = m− o(n) whp by Propo-

sition 2.6 (ii), we have

E[|Dt|2] =
∑
e,e′∈E

P (e, e′ ∈ Dt) =
∑

e,e′∈E⋆

P (e, e′ ∈ Dt) + o(n2)

=
∑
e∈E⋆

 ∑
e′∈E⋆, dist(e,e′)>σn

P (e, e′ ∈ Dt) +O(dσn)

+ o(n2),

(4.1)

with σn as in (3.5). Fix e = (x, y), e′ = (x′, y′) ∈ E⋆ such that dist(e, e′) > σn, and consider
the event

E = Ee,e′ :=
{
τx,x

′

meet ∧ τx,y
′

meet ∧ τ y,x
′

meet ∧ τ y,y
′

meet > t
}
.

We observe that, on the event E , the events {e ∈ Dt} and {e′ ∈ Dt} are negatively cor-
related. Indeed, denote by σe (respectively, σe′) a realisation of length t of the two inde-
pendent random walk trajectories starting at x and y (respectively, x′ and y′). Let H(σe′)
denote the set of possible realisations of σe′ that never meet the trajectory σe. We then
have

Pξ(e, e
′ ∈ Dt, E) =

∑
σe∈{e∈Dt}

∑
σe′∈{e′∈Dt}∩H(σe)

Pξ(σe)Pξ (σe′ | σe)

=
∑

σe∈{e∈Dt}

∑
σe′∈{e′∈Dt}∩H(σe)

Pξ(σe)Pξ (σe′)

≤
∑

σe∈{e∈Dt}

∑
σe′∈{e′∈Dt}

Pξ(σe)Pξ (σe′) = Pξ(e ∈ Dt)Pξ(e
′ ∈ Dt),

(4.2)

which gives the claimed negative dependence.
Furthermore, by Lemma 3.8 , we have P(Ec) = oP(1), which together with (4.2) guaran-

tees that

Pξ (e, e
′ ∈ Dt ) ≤ Pξ (e, e

′ ∈ Dt, E ) +Pξ(Ec) ≤ Pξ(e ∈ Dt)Pξ (e
′ ∈ Dt) + oP(1).
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Inserting the latter inequality into (4.1), we get

Eξ[|Dt|2] =
∑
e∈E⋆

 ∑
e′∈E⋆, dist(e,e′)>σn

Pξ (e, e
′ ∈ Dt) +O(dσn)

+ o(n2)

≤
∑
e∈E⋆

 ∑
e′∈E⋆, dist(e,e′)>σn

[Pξ(e ∈ Dt)Pξ (e
′ ∈ Dt) + oP(1)] +O(dσn)

+ o(n2)

≤ Eξ[|Dt|]2 + oP(n
2) + o(n2) = (1 + oP(1))Eξ[|Dt|]2.

Therefore, by Chebyshev’s inequality,

Pξ

(∣∣|Dt| − Eξ|Dt|
∣∣ > εm

)
≤ Pξ

(∣∣|Dt| − Eξ|Dt|
∣∣ > εEξ|Dt|

)
≤ Varξ(|Dt|)

ε2Eξ[|Dt|]2
= oP(1).

□

We next consider times tn such that tn/n → s ∈ (0,∞) and use results from Chen et al.
(2016). Let

γn = E[τπ⊗πmeet ] (4.3)
be the expected meeting time of two independent continuous-time simple random walks
with uniformly chosen initial positions. Chen et al. (2016) (see Theorems 2.1 and 2.2
therein) provide conditions on the underlying sequence of graphs under which the pro-
portion of type-1 vertices (Bn

γnt)t≥0 converges as a process in the space of càdlàg paths to
the Fisher-Wright diffusion (B̄t)t≥0 for γn as in Eq. (4.3). In the case of d-regular random
graphs,

γn =
1

2
θ−1d n+ oP(1), (4.4)

and the requirements in Chen et al. (2016) are easily verified whp.
The following lemma is the central estimate that we need in order to establish conver-

gence of the proportion of discordant edges.

Lemma 4.2 (Linking density of discordant edges to density of type-1). Let sn converge to a
finite value. Then

Eu

[∣∣∣Dsnγn − 2θdBsnγn(1− Bsnγn)
∣∣∣] P−→ 0.

Before proving this lemma, we conclude the proof of Theorem 1.2.

Proof of Theorem 1.2 (ii). Recall that we are assuming that tn/n → s. Consider sn = tn/γn
and note that limn→∞ sn = 2s θd, due to (4.4). Hence Lemma 4.2 yields

Eu

[∣∣∣Dtn − 2θdBtn(1− Btn)
∣∣∣] P−→ 0. (4.5)

Moreover, since x 7→ x(1 − x) is continuous and so is the Fisher-Wright diffusion (B̄t)t≥0,
Proposition A.2 implies that

2θdBtn(1− Btn) converges in distribution to 2θdB̄2s θd(1− B̄2s θd).

In view of (4.5), the same holds whp for Dtn , which concludes the proof. □
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To prove Lemma 4.2, we use the following concentration estimate derived in Chen et al.
(2016).

Lemma 4.3 (Concentration on arbitrary connected graphs). Fix a finite connected graph G
on n vertices and m edges and let (ηt)t≥0 denote the voter model evolving on G. For any 0 ≤ s ≤ t,

sup
η0

∣∣∣Eη0 [Dt]−2P[τ e > s]
1

n2

∑
x

η0(x)
∑
x

(1−η0(x))
∣∣∣ ≤ P

[
τ e ∈ (s, t]

]
+4P

[
τ e > s

]
dTV(t−s),

where τ e denotes the meeting time of two random walks starting from the two vertices at the end
of a uniformly chosen edge of G, and dTV is defined as in (2.3).

The proof of Lemma 4.3 is provided in (Chen et al., 2016, Lemma 6.1). Note that it applies
to any deterministic connected graph on which the voter dynamics takes place.

We will also need the asymptotic estimate

P
[
τ e ≥ k log2 n

] P−→ θd, k ∈ N, (4.6)

which follows from Proposition 3.9.

Proof of Lemma 4.2. Fix δn = 2 log2 n, and split

Eu

[∣∣∣Dsnγn − 2θdBsnγn(1− Bsnγn)
∣∣∣] ≤ Eu

[∣∣∣Dsnγn − 2θdBsnγn−δn(1− Bsnγn−δn)
∣∣∣]

+ 2θdEu

[∣∣∣Bsnγn−δn(1− Bsnγn−δn)− Bsnγn(1− Bsnγn)
∣∣∣]. (4.7)

We will show that each of the expectations in the right-hand side above converges to zero.

1. Apply the Markov property at time snγn − δn, to obtain

Eu

[∣∣∣Dsnγn − 2θdBsnγn−δn(1− Bsnγn−δn)
∣∣∣] ≤ sup

η0

Eη0

[∣∣∣Dδn − 2θdB0(1− B0)
∣∣∣]

≤ sup
η0

Eη0

[∣∣Dδn − Eη0 [Dδn ]
∣∣]+ sup

η0

∣∣∣Eη0 [Dδn ]− 2θd
1

n2

∑
x

η0(x)
∑
x

(1− η0(x))
∣∣∣. (4.8)

The first expectation in the right-hand side of (4.8) converges to zero by Proposition 4.1
and the fact that |Dδn −Eη0 [Dδn ]| is bounded by one. To control the second expectation in
(4.8), apply Lemma 4.3 with t = δn = 2 log2 n and s = log2 n, to obtain

sup
η0

∣∣∣Eη0 [Dδn ]− 2θd
1

n2

∑
x

η0(x)
∑
x

(1− η0(x))
∣∣∣

≤ sup
η0

∣∣∣Eη0 [Dδn ]− 2P
[
τ e ≥ log2 n

] 1
n2

∑
x

η0(x)
∑
x

(1− η0(x))
∣∣∣+ 2

∣∣∣P[τ e ≥ log2 n
]
− θd

∣∣∣
≤ P

[
τ e ∈ (log2 n, 2 log2 n]

]
+ 4P

[
τ e > log2 n

]
dTV (log

2 n) + 2
∣∣∣P[τ e ≥ log2 n

]
− θd

∣∣∣.
Note that both

P
[
τ e ∈ (log2 n, 2 log2 n]

]
= P

[
τ e > 2 log2 n

]
−P

[
τ e > log2 n

]
and ∣∣∣P[τ e ≥ log2 n

]
− θd

∣∣∣
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converge to zero whp by (4.6), while dTV(log
2 n) goes to zero thanks to Proposition 2.6 (iv).

Hence also the second expectation in (4.8) vanishes, and so we have

Eu

[∣∣∣Dtnγn − 2θdBtnγn−δn(1− Btnγn−δn)
∣∣∣] P−→ 0. (4.9)

2. It remains to show that the second term in the right-hand side of Eq. (4.7) vanishes
whp, for which we argue by continuity in the proper topology. For an arbitrary T > 0,
let [0, T ] × D[0, T ] denote the product of [0, T ] with the càdlàg space D[0, T ] endowed
with the J1-Skorohod topology. For a given s > 0 and an arbitrary evaluation function
h : [0, T ] × D[0, T ] → R defined via h(t, ϕ) = ϕ(t), we consider the incremental function
h̃ : [0, T ]2 ×D[0, T ] → R given by

h̃(t, u, ϕ) = |h(t, ϕ)− h(u, ϕ)|,

and note that, by continuity of the modulus function and Lemma A.1, all points in [0, T ]2×
C[0, T ] are continuity points of h̃. In particular, since δn

γn
→ 0 and with s = limn→∞ sn < T ,

we have that

Eu

[∣∣∣Bsnγn(1− Bsnγn)− Bsnγn−δn(1− Bsnγn−δn)
∣∣∣] = Eu

[∣∣∣h(sn, (Buγn(1− Buγn))u∈[0,T ]

)
− h
(
sn −

δn
γn

, (Buγn(1− Buγn))u∈[0,T ]

)∣∣∣] = Eu

[
h̃
(
sn, sn −

δn
γn

, (Buγn(1− Buγn))u∈[0,T ]

)]
P−→ Eu

[
h̃
(
s, s, (B̄u(1− B̄u))u∈[0,T ]

)]
= 0,

(4.10)
where the limit is justified by (1.6) and Proposition A.2 .

3. Combine (4.7), (4.9), and (4.10), to conclude the proof. □

5. UNIFORM CONCENTRATION

In this section we prove Theorem 1.3, i.e., we sharpen the result in Theorem 1.2(i) to
a uniform bound over sublinear times up to the scale n1−o(1). Note that, up to a union
bound on the set of jump times for the process Dn

t , the proof amounts to showing the
following.

Proposition 5.1 (Strengthening of the pointwise concentration). Consider the voter model
with initial density u ∈ (0, 1) on a regular random graph Gd,n(ω). For any fixed ε, δ, a > 0,

1

{
max
t≤n1−ε

Pu (|Dt − Eu[Dt]| > δ) ≤ n−a
}

P−→ 1.

Proof. The proof comes in several steps. To ease the reading, we drop the subindex u from
the notation of the voter measure Pu and abbreviate pt = E[Dt].

1. Fix
t ≤ n1−ε, Kn = log2 n,
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and write A to denote a collection of K edges of the graph sampled uniformly at random,
independently of the voter dynamics. Call

DA
t :=

1

Kn

∑
e∈A

1{e∈Dt}

the fraction of edges in the random set A that are discordant at time t. By the triangle
inequality, we have

P (|Dt − pt| > δ) ≤ P
(∣∣Dt −DA

t

∣∣ > 1
2
δ
)
+P

(∣∣DA
t − pt

∣∣ > 1
2
δ
)
. (5.1)

Note that, given Dt = q, the quantity DA
t is distributed as Z/Kn, where Z ∼ Bin(Kn, q).

Therefore, conditioning on Dt = q ∈ [0, 1], we can bound the first term on the right-hand
side of (5.1) by means of the Chernoff bound

P

(∣∣Dt −DA
t

∣∣ > 1
2
δ

∣∣∣∣ |Dt|
m

= q

)
≤ 2 exp

(
− δ2

12q
Kn

)
≤ 2 exp

(
− δ2

12
Kn

)
. (5.2)

Since the bound in (5.2) is uniform over q ∈ [0, 1] and t ≤ n1−ε, we conclude that, for every
a > 0, P-a.s.,

max
t≤n1−ε

P
(∣∣Dt −DA

t

∣∣ > 1
2
δ
)
≤ 2 exp

(
− δ2

12
Kn

)
≤ n−a,

for all n sufficiently large.

2. We next show that a similar bound holds for the second term on the right-hand side of
(5.1). The latter will be proved by means of duality. Consider a system of n independent
random walks starting from the different vertices of G and evolving independently. We
consider a (multi)sub-set of 2Kn random walks starting at the extremes of the edges in
the random set A. Note that these are distributed at time zero as ⊗Knν, where ν is the
probability distribution on [n]2 defined as

ν(x, y) = π(x)
1

d
1x∼y, (x, y) ∈ [n]2.

Moreover, since π ≡ 1
n

, the two marginal distributions of ν coincide with the stationary
distribution, i.e., for every x ∈ [n],∑

z∈[n]

ν(x, z) =
∑
z∈[n]

ν(z, x) =
1

n
.

Observe that
pt = E[Dt] =

1

m

∑
e∈E

P(e ∈ Dt) = Pν(e ∈ Dt). (5.3)

In order to simplify the notation, when considering a system of 2K independent random
walks starting at ⊗Knν, for each of the Kn random edges A = {e1, . . . , eKn}, we label the
extremes as e−j and e+j , for all j ∈ {1, . . . , Kn}. For i, j ≤ Kn, define the quantities

τ ei,ej := τ
e−i ,e−j
meet ∧ τ

e+i ,e−j
meet ∧ τ

e−i ,e+j
meet ∧ τ

e+i ,e+j
meet . (5.4)

When τ ei,ej ≤ t we say that the edges i and j interact before t. We say that τ ei,ej = 0 when
{e−i , e+i } ∩ {e−j , e+j } ≠ ∅. Note that, for all i, j ≤ Kn and t ≥ 0,

P⊗Knν
(τ ei,ej ≤ t) = Pν⊗ν(τ

e1,e2 ≤ t) ≤ 4Pπ⊗π(τ
x,y
meet ≤ t). (5.5)
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Indeed, the inequality in (5.5) follows from the definition of ν and a union bound.
We next argue that for all t = o(n) the probability on the right-hand side of Eq. (5.5) can

be bounded above whp by

Pπ⊗π(τ
x,y
meet ≤ t) = O

(
t

n

)
. (5.6)

Let us start by pointing out that the FVTL is not enough to deduce (5.6). Indeed, the FVTL
is particularly suited to have sharp estimates of the right tail of the hitting time of a set on
time scales that are at least as big as the mean hitting time. For this reason, we will exploit
a result in Aldous and Brown (1992) that in a sense complements the FVTL on short time
scales (see also (Hermon et al., 2021, Lemma 2.11)).

Lemma 5.2. For an irreducible and reversible continuous-time Markov chain with stationary
distribution µ and any subset of states A,∣∣∣∣P(τµA ≤ t)− t

E[τµA]

∣∣∣∣ ≤ ( t

E[τµA]

)2

+
1

λ⋆ E[τ
µ
A]
, 0 ≤ t ≤ E[τµA], (5.7)

where τµA is the hitting time of the set A when starting with distribution µ, and λ⋆ denotes the
minimal non-trivial eigenvalue of the infinitesimal generator of the process.

In our setting we can think of the Markov chain as the simple random walk on G ⊗ G
and of A as the diagonal, so that µ = π⊗ π, λ⋆ ∈ (0, 1) and E[τµA] = E[τπ⊗π∆ ] = Θ(n), where
the latter follows by Proposition 3.7. Note that, as soon as t/n → 0, we have that the term
on the right-hand side of (5.7) is O(t/n), as for t/E[τµA], so that (5.6) immediately follows.

The following lemma states that it is unlikely to have within A a density of edges inter-
acting before time t.

Lemma 5.3. Consider a system of n independent random walks, each starting from a different
vertex of a regular random graph Gd,n(ω). Select a sub(multi)set A of E of size 2Kn with joint
distribution ⊗Knν. Fix ε, γ > 0, t ≤ n1−ε and Kn = log2 n. Let

Et,γ :=

{
∃I ⊂ A s.t. max

e∈I
min

f∈A\{e}
τ e,f ≤ t, and |I| ≥ γKn

}
,

where τ e,f is defined as in (5.4). Then, for all a > 0,

P⊗Knν
(Et,γ) ≤ n−a whp.

Before proving Lemma 5.3, we show how the latter can be exploited to conclude the
proof of Proposition 5.1.

3. To conclude the proof of Proposition 5.1, we argue as follows. Let

Ht = {|DA
t − pt| > δ} (5.8)

be the event of interest. Consider a system of 2Kn independent random walks starting at
the extremes of the vertices in A, and let these evolve up to time t. Let I ⊂ Kn denote the
set of edges in A interacting within time t with other vertices of A. Consider the event Et
in Lemma 5.3 for which we know that, for every constants a, γ > 0, whp

P(Et,γ) ≤ n−a.
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Therefore
P (Ht) ≤ P(Ht ∩ Ec

t,γ) + n−a.

In order to conclude the lemma, it suffices to bound the probability on the right-hand side
of the above display.

4. In order to get the desired bound we next show negative correlation for the discordancy
of a collection of edges, in the spirit of the proof of Proposition 4.1.

Lemma 5.4 (Negative correlation under no-meeting events). Consider a sub(multi)set of
edges Ak = {e1, . . . , ek} sampled according to ⊗kν, and let Gt,k be the event in which the 2k
independent random walks starting at the extremes of the k edges never meet before time t. Then,
for all j ∈ {0, 1, 2, . . . , k},

P⊗kν (Exactly j of the k edges are discordant at time t, Gt,k) ≤ P (Bin(k, pt) = j) .

Proof. For e = (x, y) ∈ Ak, call σe a realisation of length t of the two independent tra-
jectories starting at x and y. For 2 ≤ j ≤ k, call H(σ1, . . . , σj−1) the set of the possible
realisations of σj that never meet the 2(j − 1) trajectories σ1, . . . , σj−1. Observe that

P⊗kν(ei ∈ Dt,∀i ≤ j, ei ̸∈ Dt,∀i > j, Gt,k)

=
∑

σ1∈{e1∈Dt}

∑
σ2∈{e2∈Dt}∩H(σ1)

· · ·
∑

σk∈{ek ̸∈Dt}∩H(σ1,...,σk−1)

k∏
j=1

P (σi | ∩j<iσj)

=
∑

σ1∈{e1∈Dt}

∑
σ2∈{e2∈Dt}∩H(σ1)

· · ·
∑

σk∈{ek ̸∈Dt}∩H(σ1,...,σk−1)

k∏
j=1

P (σi)

≤
∑

σ1∈{e1∈Dt}

∑
σ2∈{e2∈Dt}

· · ·
∑

σk∈{ek ̸∈Dt}

k∏
j=1

P (σi)

=

j∏
i=1

P⊗kν(ei ∈ Dt)
k∏

i=j+1

P⊗kν(ei ̸∈ Dt)

= (pt)
j (1− pt)

k−j ,

where in the last equality we use the identity in (5.3). By the product form of ⊗kν the
result immediately follows. □

5. Recall (5.8) and that I is the set of edges that are involved in some interaction before
time t. Under Ec

t,γ , we have |I| ≤ γKn. Therefore

P
(
Ht ∩ Ec

t,γ

)
≤

γKn∑
w=0

P
(
Ht; |I| = w

)
=

γKn∑
w=0

∑
B⊂A : |B|=w

1(
Kn

w

)P(Ht; I = B
)
.

Setting k(w) = Kn − w, exchangeability implies

P
(
Ht ∩ Ec

t,γ

)
≤

γKn∑
w=0

P
(
Ht;A \ I = e1, . . . , ek(w)

)
.
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Observe that the event {A\I = e1, . . . , ek(w)} implies that the first k(w) edges do not inter-
act with any edge in A and that each of the last w edges has at least one interaction. This
is clearly contained in the event Gt,k(w) = {mini,j≤k(w) τ

ei,ej > t} introduced in Lemma 5.4.
Hence

P
(
Ht ∩ Ec

t,γ

)
≤

γKn∑
w=0

P
(
Ht ∩ Gt,k(w)

)
.

Observe that, under the event Ht ∩ Gt,k(w),

δKn <
∣∣∣∑
e∈A

1{e∈Dt} − ptKn

∣∣∣ ≤ ∣∣∣Kn−w∑
i=1

1{ei∈Dt} − pt|Kn − w|
∣∣∣+ w + ptw

≤
∣∣∣Kn−w∑

i=1

1{ei∈Dt} − pt|Kn − w|
∣∣∣+ 2γKn,

which implies, with

Rt,k(w) :=

∣∣∣
k(w)∑
i=1

1{ei∈Dt} − ptk(w)
∣∣∣ > (δ − 2γ)k(w)

 ,

that
Rt,k(w) ∩ Gt,k(w) ⊃ Ht ∩ Gt,k(w).

It follows that

P
(
Ht ∩ Ec

t,γ

)
≤

γKn∑
w=0

P
(
Ht ∩ Gt,k(w)

)
≤

γKn∑
w=0

P
(
Gt,k(w) ∩Rt,k(w)

)
, (5.9)

from which, thanks to Lemma 5.4, for every a > 0 whp,

P
(
Ht ∩ Ec

t,γ

)
≤

γKn∑
w=0

P
(
Gt,k(w) ∩Rt,k(w)

)
≤

γKn∑
w=0

P(
∣∣Bin(Kn − w, pt)− pt|Kn − w|

∣∣ > (δ − 2γ)(Kn − w)) ≤ n−a.

□

Proof of Lemma 5.3. The proof comes in several steps. For simplicity, we suppress the de-
pendence on γ from the notation.

1. For a vertex x ∈ [n], we call Px the subset of times [0, t] in which the random walk
starting at x moves. Put

Ptot =
{
∀x ∈ [n], |Px| ≤ nε/2t

}
and note that

P
(
Ptot

)
≥ 1− nP

(
Poisson(t) > nε/2t

)
≥ 1− n−a, for all a > 0,

where the last inequality holds for all n large enough. Therefore it is enough to show that,
for all a > 0,

P⊗Knν

(
Et,γ ∩ Ptot

)
≤ n−a whp.
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Clearly,

P⊗Knν

(
Et,γ ∩ Ptot

)
≤

∑
I⊂A : |I|≥γKn

P⊗Knν

(
max
e∈I

min
f∈A\{e}

τ e,f ≤ t, Ptot

)

≤
Kn∑

C=γKn

(
Kn

C

)
P⊗Cν

(
max
e∈I

min
f∈I\{e}

τ e,f ≤ t, Ptot

)
,

(5.10)

where in the second line, due to the exchangeability of the edges in A and with a slight
abuse of notation, we can take for I the set of the first C edges of A. Given I , associate to
it one possible collection of first interactions between its vertices. Call this set

BI = {(1, j1), . . . , (C, jC)},
where (ℓ, jℓ) stands for the event that the first edge with which the edge eℓ interacts is ejℓ .

2. For every choice of BI , we denote by Et(I, BI) the event Et,γ in which the set of inter-
acting edges is I and BI = {(1, j1), . . . , (C, jC)} is the set of first interactions. Then

P⊗Cν

(
Et(I, BI) ∩ Ptot

)
≤ P⊗Cν

(
τ e1,ej1 ≤ t,Ptot(1)

) C∏
ℓ=2

P⊗Cν

(
τ eℓ,ejℓ ≤ t, Ptot(ℓ) | Fℓ−1

)
,

(5.11)
where, for ℓ ∈ {1, . . . , C}, we put

Ptot(ℓ) := {|Pe−ℓ
| ≤ nε/2t} ∩ {|Pe+ℓ

| ≤ nε/2t} ∩ {|Pe−jℓ
| ≤ nε/2t} ∩ {|Pe+jℓ

| ≤ nε/2t}

and
Fℓ := ∩ι≤ℓ{τ eι,ejι ≤ t} ∩ Ptot(ι), ℓ = {2, . . . , C}.

By construction, regardless of the specific ordering of the elements in the set BI , there is a
collection of at least C/2 indices ℓ ∈ {1, . . . , C} such that

|Ξℓ| :=
∣∣{eℓ, ejℓ} ∩ {e1, ej1 , . . . , eℓ−1, ejℓ−1

}
∣∣ ≤ 1.

We claim that, for every ℓ ∈ {1, . . . , C} for which |Ξℓ| = 0,

P⊗Cν (τ
eℓ,ejℓ ≤ t | Fℓ−1) ≤ Pν⊗ν

(
τ e,f ≤ t

)
+

4C

n
= O

(
C + t

n

)
. (5.12)

Indeed,
P⊗Cν (τ

eℓ,ejℓ ≤ t | Fℓ−1)

≤ P⊗Cν

(
τ eℓ,ejℓ ≤ t, {e−ℓ , e

+
ℓ , e

−
jℓ
, e+jℓ} ∩ ∪ι<ℓ{e−ι , e+ι , e−jι , e

+
jι
} = ∅ | Fℓ−1

)
+

4ℓ

n

= P⊗Knν

(
τ eiℓ ,ejℓ ≤ t, {e−ℓ , e

+
ℓ , e

−
jℓ
, e+jℓ} ∩ ∪ι<ℓ{e−ι , e+ι , e−jι , e

+
jι
} = ∅

)
+

4ℓ

n

≤ P⊗Knν
(τ eiℓ ,ejℓ ≤ t) +

4C

n
.

Therefore, by (5.5), we conclude that, under |Ξℓ| = 0,

P⊗Cν (τ
eℓ,ejℓ ≤ t | Fℓ−1) ≤ 4Pπ⊗π(τ

x,y
meet ≤ t) +

4C

n
, (5.13)

and (5.12) follows by inserting (5.6) into (5.13).
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3. Assume now that for some ℓ ∈ {1, . . . , C} we have |Ξℓ| = 1. More precisely, under
Fℓ−1 ∩ {|Ξℓ| = 1}, one among eℓ and ejℓ is still unsampled at step ℓ. Without loss of gener-
ality, assume that eℓ is such an unsampled random edge. By the same argument used to
derive (5.13), and putting

Jℓ :=
{
{e−ℓ , e

+
ℓ }
⋂

∪ι<ℓ{e−ι , e+ι , e−jι , e
+
jι
} = ∅

}
,

we bound

P⊗Cν

(
τ eℓ,ejℓ ≤ t,Ptot(ℓ) | Fℓ−1

)
≤ 2P⊗Cν

(
τ eℓ,ejℓ ≤ t,Ptot(ℓ),Jℓ | Fℓ−1

)
+

8C

n
.

Arguing as in (Oliveira, 2013, Proposition 4.5), we get that, under |Ξℓ| = 1 with eℓ unsam-
pled at step ℓ,

P⊗Cν

(
τ eℓ,ejℓ ≤ t,Ptot(ℓ),Jℓ

∣∣ Fℓ−1
)

≤ P⊗Cν

(
τ eℓ,ejℓ ≤ t

∣∣ Fℓ−1, Jℓ, Ptot(ℓ)
)

= P⊗Cν

(
τ
e−ℓ ,e−jℓ
meet ∧ τ

e+ℓ ,e−jℓ
meet ∧ τ

e−ℓ ,e+jℓ
meet ∧ τ

e+ℓ ,e+jℓ
meet ≤ t

∣∣ Fℓ−1, Jℓ, Ptot(ℓ)

)
≤ 4P⊗Cν

(
τ
e−ℓ ,e−jℓ
meet ≤ t

∣∣ Fℓ−1, Jℓ, Ptot(ℓ)

)
= 4E

[
P⊗Cν

(
τ
e−ℓ ,e−jℓ
meet ≤ t

∣∣ Fℓ−1, Jℓ, Ptot(ℓ), Pe−ℓ
, Pe−jℓ

) ∣∣∣∣Fℓ−1, Jℓ, Ptot(ℓ)

]
,

(5.14)

where the second inequality follows from the equality of the marginals. Note that, con-
ditionally on Fℓ−1 and Jℓ, for all s ≤ t the position of the random walk starting at e−ℓ is
distributed according to π. On the other hand, the position of the random walk starting at
e−jℓ at time s is distributed in a non-trivial way. Moreover, the positions of the two random
walks at time s are independent. Hence

P⊗Cν

(
τ
e−ℓ ,e−jℓ
meet ≤ t

∣∣ Fℓ−1, Jℓ, Ptot(ℓ), Pe−ℓ
, Pe−jℓ

)
≤

∑
s∈P

e−
ℓ
∪P

e−
jℓ

P⊗Cν

(
X

(e−ℓ )
s = X

(e−jℓ
)

s

∣∣ Fℓ−1, Jℓ, Ptot(ℓ), Pe−ℓ
, Pe−jℓ

)

≤
∑

s∈P
e−
ℓ
∪P

e−
jℓ

max
λ

∑
x∈[n]

λ(x)π(x) ≤
|Pe−ℓ

∪ Pe−jℓ
|

n
.

(5.15)

Inserting (5.15) into the expectation in (5.14), we obtain

P⊗Cν

(
τ eiℓ ,ejℓ ≤ t,Ptot(ℓ),Jℓ

∣∣ Fℓ−1, |Ξℓ| = 1
)
≤ 8nε/2t

n
. (5.16)

Inserting (5.13)–(5.16) into (5.11), we obtain

P⊗Cν

(
Et(I, BI) ∩ Ptot

)
≤
(
8(nε/2t+ C)

n

)C/2

≤

(√
8(nε/2t+K)

n

)C

=: ΓC . (5.17)
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4. By (5.10), (5.17) and the fact that there are (C − 1)C different ways to select the set BI ,
we are now ready to conclude that whp

P⊗Knν

(
Et,γ ∩ Ptot

)
≤

Kn∑
C=γKn

(
Kn

C

)
CCΓC ≤

Kn∑
C=γKn

(K2
nΓ)

C .

Since, by our choice of t and Kn,
K2

nΓ ≤ n−ε/5

for all n large enough, we obtain

P⊗Knν

(
Et,γ ∩ Ptot

)
≤ Knn

− εγ
5
Kn ,

concluding the proof. □

APPENDIX A. AUXILLIARY FACTS FOR CÀDLÀG PROCESSES

In the next lemma, for an arbitrary T > 0, we let [0, T ] × D[0, T ] denote the product of
[0, T ] with the càdlàg space D[0, T ] endowed with the J1-Skorohod topology.

Lemma A.1. Consider the function h : [0, T ] × D[0, T ] → R defined via h(s, ϕ) = ϕ(s). Every
point in [0, T ]× C[0, T ] is a continuity point of h.

Proof. Assume that (sn, ϕn) is a sequence that converges to (s, ϕ), with ϕ ∈ C[0, T ]. We
need to verify that h(sn, ϕn) converges to h(s, ϕ). Indeed, if ϕn converges to ϕ, then there
exists a sequence of increasing functions λn : [0, T ] → [0, T ] with λn(0) = 0 and λn(T ) = T
such that λn(u) → u and ϕn(u) − ϕ(λn(u)) → 0 uniformly over u ∈ [0, T ]. From this we
obtain

||ϕn − ϕ||∞ ≤ ||ϕn − ϕ ◦ λn||∞ + ||ϕ ◦ λn − ϕ||∞ → 0,

since any function in C[0, T ] is uniformly continuous. In particular, ϕn converges to ϕ
uniformly, which readily implies that ϕn(sn) → ϕ(s) and concludes the proof of the
lemma. □

Proposition A.2. Assume that (Xn
u )u∈[0,T ] is a sequence of càdlàg processes that converge in dis-

tribution to a process (Xu)u∈[0,T ] that has almost surely continuous trajectories. For any sequence
tn → t ∈ [0, T ], Xn

tn converges in distribution to Xt.

Proof. From the assumptions of the proposition, it follows that ((Xn
u )u∈[0,T ], tn)n∈N con-

verges in distribution to ((Xu)u∈[0,T ], t). Let h : [0, T ]×D[0, T ] → R as in Lemma A.1. Note
that, since (Xu)u∈[0,T ] is almost surely continuous, it follows that Xn

tn = h(tn, (X
n
u )u∈[0,T ])

converges in distribution to Xt = h(t, (Xu)u∈[0,T ]). □
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