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Abstract

Consider a stable M/G/1 system in which, at time t = 0, there are
exactly n customers with residual service times equal to v1, v2, . . . , vn.
In addition, assume that there is an extra customer c who arrives at
time t = 0 and has a service requirement of x. The externalities which
are created by c are equal to the total waiting time that others will
save if her service requirement is reduced to zero. In this work, we
study the joint distribution (parameterized by n, v1, v2, . . . , vn, x) of
the externalities created by c when the underlying service distribution
is either last-come, first-served with preemption or first-come, first-
served. We start by proving a decomposition of the externalities under
the above-mentioned service disciplines. Then, this decomposition is
used to derive several other results regarding the externalities: mo-
ments, asymptotic approximations as x → ∞, asymptotics of the tail
distribution, and a functional central limit theorem.
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1 Introduction

Consider a stable M/G/1 queue with an arrival rate λ and a service dis-
tribution G(·). In addition, assume that at time t = 0, there are n ≥ 0
customers in the system whose residual service times are respectively equal
to v1, v2, . . . , vn. Now, assume that there is an arrival of an additional cus-
tomer with a service requirement x ≥ 0 at time t = 0. In general, we say
that the externalities which are generated by this additional customer are
equal to the total amount of waiting time that others would save if she re-
duced her service requirement from x to zero. Some motives for the research
about the properties of the externalities are in the context of, e.g., choice of
a management scheme [17], regulation of queues with discretionary services
[21, 22] and server-allocation (scheduling) problems in multiclass queues (es-
pecially with dynamic class types) [3, 19, 20, 28]. For an extra elaboration
regarding these aspects, see [23, Section 1.1].

Naturally, the externalities which are created by the additional customer
are stochastic and the corresponding analysis relies heavily on the under-
lying service discipline. In previous work [23], there is an analysis of the
externalities under the assumption that the service discipline is first-come,
first-served (FCFS). The main motivation for the current research has been
to examine the externalities under a different service discipline, viz., the
last-come, first-served with preemption (LCFS-PR), and to obtain insight
into the effect of the service discipline on externalities. This is triggered by
the observation that FCFS and LCFS-PR are in some respect two extreme
cases w.r.t. externalities: In FCFS, the additional customer only affects
later arrivals, whereas in LCFS-PR she only affects the customers who are
already present. To the best of our knowledge, the only existing result under
the LCFS-PR discipline is about the expected externalities in a stationary
queue [17, Theorem 2.2].

The analysis of the current work is based on a joint representation of the
externalities under LCFS-PR and FCFS in terms of a bivariate compound
Poisson process. The arrival rate of this process is λ and its bivariate jump
distribution is determined uniquely by the primitives of the model (λ and
G(·)) in a way which is to be explained in the sequel. Notably, this de-
composition is a generalization of the univariate decomposition which was
introduced in [23, Corollary 2] for the externalities under the FCFS disci-
pline. In order to give a formal statement of this decomposition, a precise
definition of the externalities under both LCFS-PR and FCFS disciplines
should be addressed. This is done in Section 2. Then, Section 3 is dedi-
cated to the statement and the proof of the decomposition result. In other
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sections of this work, there are various applications of the above-mentioned
decomposition:

1. In Section 4, the decomposition is used to derive the first and second
moment of the externalities under the LCFS-PR discipline, and the
correlation with the externalities under the FCFS discipline. In par-
ticular, the results include: (i) a generalization of [17, Theorem 2.2]
and (ii) an explicit expression for the variance of the externalities in a
stationary M/M/1 LCFS-PR queue.

2. In Section 5, the decomposition is used to derive a first order ap-
proximation of the externalities under LCFS-PR when x → ∞. In
addition, it is applied to determine the rate at which the externalities
under FCFS tend to infinity as x→ ∞.

3. In Section 6, utilizing the decomposition, we study the tail asymptotics
of the externalities under both LCFS-PR and FCFS. In particular, we
show that if the service times belong to a specific large subclass of the
subexponential distributions, then so do the externalities.

4. In Section 7, a functional central limit theorem (CLT) for the exter-
nalities under the LCFS-PR service discipline is derived. This result
is analogous to [23, Theorem 4] which states a functional CLT for the
externalities under the FCFS discipline.

Finally, Section 8, and also Subsections 6.1 and 7.2, contain a discussion
about open problems which arise from the current research and might be
interesting to consider in the future.

2 Model description

Let λ > 0 and assume that G(·) is a distribution function such that G(0−) =
0. In addition, denote its LST (Laplace-Stieltjes transform) by

G̃(s) =

∫ ∞

0
e−stdG(t), s ≥ 0 , (1)

and for each m ≥ 1 denote

µm =

∫ ∞

0
tmdG(t). (2)

In particular, assume that ρ ≡ λµ1 < 1.
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Let {J(t); t ≥ 0} be a compound Poisson process with rate λ and jump
distribution G(·). Also, let v ≡ (v1, . . . , vn) be a vector with positive coor-
dinates and denote v ≡ v1 + v2 + . . .+ vn. Then, define the process

Xv(t) ≡ v + J(t)− t , (3)

and denote its reflection at the origin (for more details, Te.g., [7, Section 2.4])
by Wv(t). Note that Wv(t) represents the workload process of an M/G/1
system with strong service discipline (i.e., the order in which customers are
served is not a function of their service requirements; cf. [17]), an arrival rate
λ and a service distribution G(·) under the following assumption: At time
t = 0, there are n ≥ 1 customers c1, c2, . . . , cn such that for every 1 ≤ i ≤ n,
the remaining service time of ci is equal to vi. In addition, without loss of
generality we shall assume that for every 1 ≤ i < j ≤ n, ci arrived to the
queue before cj .

2.1 The Externalities under LCFS-PR

Assume that the service discipline is LCFS-PR and observe that the pre-
emption implies that an arrival of an additional customer c with a service
requirement x ≥ 0 at time t = 0 increases the waiting times of c1, c2, . . . , cn
while the waiting times of the customers who arrive after time t = 0 remain
the same. Now, for every 0 ≤ j ≤ n denote vj =

∑j
s=1 vs (an empty sum

being zero) and observe that the additional waiting time of ck (1 ≤ k ≤ n)
due to the arrival of the additional customer at time t = 0 is equal to

Ek(x,v) ≡ min{t ≥ 0;Wvn+x(t) = vk−1} −min{t ≥ 0;Wvn(t) = vk−1} . (4)

It is common to refer to Ek(x,v) as the externalities which are imposed on
ck and correspondingly to define the total externalities by

E(x,v; LCFS) ≡
n∑

k=1

Ek(x,v). (5)

Here and in the sequel we generally suppress n when denoting externalities.

2.2 The Externalities under FCFS

Assume that the service discipline is FCFS and for every i ≥ 1, let τi be the
time when J(·) has its i-th jump. Assume that an additional customer c with
a service requirement x ≥ 0 arrives at time t = 0. Then, her arrival can only
affect the waiting times of those who arrive after time t = 0. Specifically,
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for every i ≥ 1, the externalities which are imposed on the customer who
arrived at τi are equal to Wv+x(τi) −Wv(τi). Thus, the total externalities
are

E(x,v; FCFS) ≡
∞∑
i=1

[Wv+x(τi)−Wv(τi)] , (6)

and it is instructive to notice that they depend on v only through v. A
thorough analysis of (6) is provided in [23].

3 Decomposition

Denote the externalities vector

E(x,v) ≡ (EL(x,v, n), EF (x,v, n)) ≡ (E(x,v; LCFS), E(x,v; FCFS)) (7)

and note that once the vector v is fixed, then {E(x,v);x ≥ 0} is a bivari-
ate stochastic process. In Subsection 3.1 we present a decomposition of
this process in terms of a compound Poisson process; cf. Theorem 1. In
Subsection 3.2 we briefly discuss such a decomposition for non-preemptive
LCFS.

3.1 LCFS-PR and FCFS

In order to phrase the externalities decomposition for LCFS-PR and FCFS,
denote wj ≡ v − vj−1 for every 1 ≤ j ≤ n. In addition, consider a FCFS
M/G/1 queue with an arrival rate λ and a service distribution G(·) which
is empty at t = 0. Let B be the length of the first busy period and let N be
the number of customers who received service during this period. Its joint
distribution is given on p. 250 of [5]; see also Formula (28) below.

Theorem 1 In the probability space of the model, there exists a bivariate
compound Poisson process S ≡ (S1, S2) with rate λ and jumps which are
distributed like the vector (B,N) such that:

1. For each 1 ≤ k ≤ n,

Ek(x,v) = x+ S1(x+ wk)− S1(wk) , x ≥ 0 , (8)

and hence

EL(x,v) = nx+

n∑
k=1

[S1(x+ wk)− S1(wk)] , x ≥ 0 . (9)
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2.

EF (x,v) =
∫ x

0
S2(v + y)dy , x ≥ 0 . (10)

Remark 1 Assume that the initial workload is v+x. In addition, consider
the customers whose arrival times determine the descending ladder process
(of the workload). Due to the strong Markov property of the workload pro-
cess, each of these customers initiates a busy period which ends when the
workload level returns to its original level (the level just before the first
arrival epoch of that busy period). For each of these busy periods we may
compute: (i) The length of the busy period and (ii) the number of cus-
tomers who arrive until it ends. Since these busy periods are independent,
the resulting bivariate random vectors are independent. Furthermore, stan-
dard properties of the Poisson process imply that the number of customers
whose arrival times determine the descending ladder process has a Poisson
distribution with rate λ(v + x) and it is independent from the busy peri-
ods initialized by these customers. Thus, the sum of the bivariate random
vectors has a bivariate compound Poisson distribution. This observation is
the basis of the construction of S = (S1, S2). In [23], it was shown that
EF (x,v) is determined uniquely by S2(·) via the integral (10). Here, we
complete the picture by expressing EL(x,v) as a functional of S1(·). Re-
markably, the statement of Theorem 1 is about a joint decomposition of
E(x,v) as a functional of S(·). We will demonstrate the additional value
of having this joint decomposition by computing the cross covariance (and
correlation) of EL(x,v) and EF (x,v) in Subsection 4.2. In particular, this
computation reveals that the coordinates of E(x,v) are positively correlated,
and quite strongly correlated in heavy traffic. This is not surprising in view
of the fact that the number of customers and the length of each busy period
in an M/G/1 queue are positively dependent. Furthermore, in Sections 6
and 7 we mention two open problems for which we suspect that the joint
decomposition in Theorem 1 might be useful in their solutions.

Remark 2 Importantly, the equations (8),(9) and (10) all hold for every
realization of the probability space and for every x ≥ 0. Thus, the decom-
position in Theorem 1 is a strong one.

Remark 3 Note that the stationary increments of the compound Poisson
process imply that for every x ≥ 0 and 1 ≤ k ≤ n,

Ek(x,v)
d
= x+ S1(x) . (11)
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Notably, the distribution of the right-hand side is invariant with respect to
v and k, which is a bit surprising. In practice, this means that when the
service discipline is LCFS-PR, then for every 1 ≤ k ≤ n, the distribution
of the externalities which are imposed on ck is invariant with respect to:
(i) the vector of the remaining service times v and (ii) the place k of ck in
the order of service.

Remark 4 Fix v and observe that x 7→ EF (x,v) is an integral of a non-
decreasing right-continuous process and hence it is convex. On the other
hand, the sample paths of x 7→ EL(x,v) are composed of a positive drift and
positive jumps. Consequently, deduce that x 7→ EL(x,v) is neither convex
nor concave in x.

Proof: [Theorem 1] Fix v and let T1 equal τ1, the time of the first jump
of the process J(·). Under LCFS-PR, this arrival interrupts the service of
one of the customers present at time 0, whose service is resumed once the
workload process is back at level Xvn+x(T1), a time which we denote by U1.
Now, let T2 be the time of the first jump of the process J(·) after U1, and
U2 the first time after T2 the process Xvn+x(·) is back at level Xvn+x(T2).
Similarly, let T3 be the time of the first jump of the process J(·) after U2,
and U3 the first time after T3 the process Xvn+x(·) hits Xvn+x(T3). We may
continue recursively with this construction, yielding the sequences (Ti)i≥1

and (Ui)i≥1. An illustration of these sequences for a single sample path of
J(·) is given in Figure 1.

Denote U0 ≡ 0 and for each i ≥ 1, let Ii ≡ Ti−Ui−1. Note that I1, I2, . . .
is an iid sequence of exponentially distributed random variables with rate
λ. Furthermore, define for each i ≥ 1

Wi ≡ Ui − Ti , Ni ≡ |{Ti ≤ t ≤ Ui; J(t)− J(t−) > 0}| , (12)

and observe that (W1, N1), (W2, N2), . . . are iid bivariate random vectors
with the distribution of (B,N). Importantly, the sequences I1, I2, . . . and
(W1, N1), (W2, N2), . . . are independent, and hence may be used to construct
a bivariate compound Poisson process. Specifically, with

Nλ(t) = min
{
k ≥ 1;

k∑
i=1

Ii > t
}
− 1 , t ≥ 0

a Poisson process with rate λ, we consider the bivariate process

S(t) ≡ (S1(t), S2(t)) ≡
Nλ(t)∑
i=1

(Wi, Ni) , t ≥ 0 . (13)
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Time

Workload

v

v + x

T1 U1 T2 U2 T3 U3 τv+x(v)

Figure 1: The blue graph illustrates a path of the workload process from
level v + x to the lower level v. Note that U1 − T1, U2 − T2 and U3 − T3 are
three iid random variables which are distributed like B. In addition, observe
that x = (v + x)− v = T1 + T2 − U1 + T3 − U2 + τv+x(v)− U3.

Denote
τv(y) ≡ min{t ≥ 0;Xv(t) = y}, y > 0 , (14)

and observe that

Ek(x,v) = τvn+x(vk−1)− τvn+x(vk−1 + x). (15)

In addition, for every 0 ≤ y ≤ v,

τv(y) = min{t ≥ 0;Xv−y(t) = 0} = v − y + S1(v − y), (16)

and hence by combining (15) and (16), deduce (8). Finally, [23, Corollary
2] implies (10).

3.2 Non-preemptive LCFS

One may wonder why we did not include the non-preemptive LCFS (LCFS-
NP) in the decomposition which was stated in Theorem 1. The reason is
that there exist some crucial differences between LCFS-PR and LCFS-NP.
In order to explain these differences, we also provide a concrete example
with a pictorial illustration in Figure 2.

Consider an M/G/1 queue under the LCFS-NP discipline, and recall
that for every 1 ≤ i < j ≤ n, ci arrived to the queue before cj . Then, cn
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t

t

0 2 5 6

0 2 3 4 7

2.5
x = 0:

x = 1:

c2 c1 ĉ

c2 c ĉ c1

Figure 2: Consider a LCFS-NP M/G/1 queue with n = 2, v1 = 3, v2 = 2.
In addition, assume that there is only one customer ĉ who arrived at t = 2.5
and that besides him, no one else arrived during the time interval (0, 5]. If
x = 1, the service of ĉ would have been initiated at t = 3. If x = 0, the
service of ĉ would have been initiated at t = 5. This example demonstrates
a possibility of having negative externalities.

was not preempted by the additional customer c who arrives at t = 0 with
a service requirement x ≥ 0. Thus, the externalities which were imposed on
cn by c had been equal to zero. In addition, for every 1 ≤ k < n, there were
no interruptions during the service period of ck. Therefore, the externalities
which were imposed on ck by c had been equal to

min{t ≥ 0;Wvn+x(t) = vk} −min{t ≥ 0;Wvn(t) = vk} = Ek+1(x,v). (17)

While this is in line with the decomposition (8), now a big difference is
showing up: Unlike in the case of the LCFS-PR discipline, under LCFS-NP
the additional customer might influence the waiting times of the customers
who arrived after time t = 0 and the computation of the externalities for
these customers is very complicated. This is mainly because their waiting
times might be affected by the customer who was in the service position
when they arrived. In fact, externalities could be negative for LCFS-NP.

4 The moments of E(x,v)
When v is fixed, the moments of EF (·,v) are given in [23, Section 4]. If v is a
random vector which is independent from the arrival process and the service
demands of the customers, then the moments of EF (·,v) are given in [23,
Section 7]. In Subsection 4.1 we analyse the first two moments of EL(·,v) and
in Subsection 4.2 the joint moment of the coordinates of E(x,v). A mean-
variance analysis for LCFS-PR is performed in Subsection 4.3. Initially, v
is assumed to be fixed, but this assumption is relaxed in Subsection 4.4.
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4.1 Mean and auto-covariance of EL(·,v)

It is well-known (cf. [5], Section II.4.4) that

EB =
µ1

1− ρ
, EB2 =

µ2
(1− ρ)3

. (18)

Thus, (11) implies that

EEL(x,v)
n

= EE1(x,v) (19)

= x+ ES(x)

= x(1 + λEB) =
x

1− ρ
.

Also, a standard calculation yields that

Cov (S1(t1), S1(t2)) = λEB2min{t1, t2} (20)

=
λµ2min{t1, t2}

(1− ρ)3
, t1, t2 ≥ 0,

and for simplicity of notations write

σ2(u) ≡ Var (S1(u)) =
λµ2u

(1− ρ)3
, u ≥ 0 . (21)

Therefore, for every 1 ≤ k, l ≤ n and x1, x2 ≥ 0 deduce that

Rk,l(x1, x1 + x2) ≡ Cov
(
Ek(x1,v), El(x1 + x2,v)

)
(22)

=

{
σ2(x1+wk)− σ2(min{x1+wk, wl}), wk ≤ wl

σ2(x1+min{wk, x2+wl})− σ2(min{wk, x1+x2+wl}), wk > wl

,

=
λµ2

(1− ρ)3

{
(x1 + wk − wl)

+, k ≥ l

(x1 − (x2 + wl − wk)
−)+, k < l

,
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where we have used the standard notations u+ ≡ max{u, 0} and u− ≡
max{−u, 0}. As a result, this formula implies that

Rv(x1, x1 + x2) ≡ Cov (EL(x1,v), EL(x1 + x2,v)) (23)

=
n∑

k=1

Rk,k(x1, x1 + x2) +
n∑

k,l=1;k ̸=l

Rk,l(x1, x1 + x2)

=
nx1λµ2
(1− ρ)3

+
n∑

k=2

k−1∑
l=1

(
Rk,l(x1, x1+x2) +Rl,k(x1, x1+x2)

)
=

λµ2
(1− ρ)3

[
nx1 +

n∑
k=2

k−1∑
l=1

(
(x1 + wk − wl)

+ + (x1 − (x2 + wk − wl)
−)+

)]

=
λµ2

(1− ρ)3

[
nx1 +

n∑
k=2

k−1∑
l=1

(
(x1−vl,k)+ + (x1 − (x2−vl,k)−)+

)]
,

where

vl,k ≡ wl − wk =
k−1∑
i=1

vi −
l−1∑
i=1

vi , 1 ≤ l, k ≤ n . (24)

For future reference, we mention that taking x2 = 0 in (23) gives

Var [EL(x,v)] =
λµ2

(1− ρ)3

nx+ 2
∑

1≤l<k≤n

(x− vl,k)
+

 . (25)

Remark 5 Observe that Rv(x1, x1 + x2) is positive whenever x1 > 0.

Remark 6 The auto-correlation function of Ek(·,v) is easily seen to equal

Rk,k(x1, x1 + x2)√
Rk,k(x1, x1)Rk,k(x1 + x2, x1 + x2)

=

√
x1

x1 + x2
.

Notably, this expression is invariant with respect to the parameters of the
model, i.e., the arrival rate and the service distribution. The auto-correlation
function of the total externalities satisfies the same invariance. The auto-
correlation function of EF (x,v) has the same property (see, [23, Eq. (33)]).

4.2 Cross-covariance of EL(·,v) and EF (·,v)

We first mention two results from [23]:

EEF (x,v) = λx
(
v +

x

2

)
EN = λx

(
v +

x

2

) 1

1− ρ
, (26)
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Var[EF (x,v)] = λx2
(
v +

x

3

)
EN2 = λx2

(
v +

x

3

) λ2µ2 + 1− ρ2

(1− ρ)3
. (27)

Next consider the joint distribution of the length B of an M/G/1 busy period
and the number of customers N served in it. It is well-known (cf. p. 250 of
[5]) that for every α, β ≥ 0,

ϕ(α, β) ≡ Ee−αN−βB = e−αG̃ {β + λ [1− ϕ(α, β)]} . (28)

Observe that

dG̃(β+λ(1−y))
dy

= λ

∫ ∞

0
te−βt−λ(1−y)tdB(t) . (29)

Therefore, differentiating both sides of (28) once with respect to β, then
with respect to α and taking both α and β equal to zero yields

EBN =
1

(1− ρ)3
(
(1− ρ)µ1 + λµ2

)
. (30)

In addition, observe that for every u, y > 0,

c(u, y) ≡ ES1(u)S2(y) (31)

= E
Nλ(u∧y)∑

i=1

BiNi + E
Nλ(u)∑
i=1

Nλ(y)∑
j=1;j ̸=i

BiNj

= λ(u ∧ y)EBN +
(
ENλ(u ∧ y)

(
Nλ(u ∨ y)−1

))
EBEN

= λ(u ∧ y)EBN + λ2uyEBEN .

Therefore, using (26) in the third step below,

Cov (EL(x,v), EF (x,v)) (32)

=

n∑
k=1

{ v+x∫
v

(
c(x+wk, y)− c(wk, y)

)
dy
}
− nλxEBEEF (x,v)

=
n∑

k=1

{
λEBN

v+x∫
v

(
(y−wk)∧x

)
dy + λ2x2

(
v+

x

2

)
EBEN

}
− nρx

1−ρ
EEF (x,v)

=
(1−ρ)ρ+λ2µ2

(1−ρ)3
n∑

k=1

v+x∫
v

(
(y−wk)∧x

)
dy

=
(1−ρ)ρ+λ2µ2

(1−ρ)3

{
nx2− 1

2

n∑
k=1

((x− (v−wk))
+)2

}
.
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Together with the expression (27) for the variance of EF (x,v) this directly
yields that

Corr(EL(x,v), EF (x,v)) (33)

=

(
(1−ρ)µ1+λµ2

){
nx2− 1

2

∑n
k=1((x− (v−wk))

+)2

}
x
√
µ2(1+λ2µ2−ρ2)(v+ x

3 )(nx+ 2
∑

1≤l<k≤n(x−vl,k)+)
,

which is easily seen to be positive. In particular, denote the variance of the
service distribution by σ2 and observe that

lim
x→∞

Corr(EL(x,v), EF (x,v)) =
√
3

2

(1−ρ)µ1+λµ2√
µ2(1+λ2µ2−ρ2)

(34)

=

√
3

2

µ1+λσ
2√

(µ1+λσ2)2+(1−ρ)2σ2
,

which is bounded from above by
√
3/2 (the value that is attained in heavy

traffic).

4.3 Mean-variance analysis

Fix x > 0 and some positive integer n. Define the function V : [0,∞)n →
(0,∞) as follows:

V (v) ≡ V (v;x, n) ≡ Var [EL(x,v)] ,

and notice that it is given by (25). Recall that (19) implies that the mean
of EL(x,v) is determined uniquely by the parameters x and n (which is the
length of v). This motivates the following natural question: Given fixed
values of x and n, what are the extreme values that the variance of EL(x,v)
may get?

Corollary 1 For every x and n,

min
v
V (v;x, n) =

nxλµ2
(1− ρ)3

, max
v

V (v;x, n) =
n2xλµ2
(1− ρ)3

. (35)

Proof: Observe that V (v) is determined uniquely by v1, v2, . . . , vn−1, i.e.,
it is invariant with respect to the value of vn. Furthermore, V (·) is decreas-
ing in each of the coordinates v1, v2, . . . , vn−1. This immediately yields the
result.
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Remark 7 The current discussion resembles the situation in the classical
mean-variance analysis in which the aim is to decompose a portfolio with
minimal variance under the constraint that the expected return is fixed (see,
e.g., [29]).

Remark 8 Note that for every n > 1 and v > 0,

V (v;x, 1) =
xλµ2

(1− ρ)3
<
n2xλµ2
(1− ρ)3

= V (0, 0, . . . , 0, v;x, n) . (36)

This means that gradual reduction of the remaining service times of the
customers towards zero does not have the same effect as removing these
customers from the system. In particular, Corollary 1 implies that by re-
ducing the remaining service times of c1, c2, . . . , cn−1 to be arbitrarily close
to zero, the variance of the total externalities becomes arbitrarily close to
its maximum. However, it is important to notice that once the remaining
service times of the customers are elapsed, they leave the system. Thus,
in that sense the maximum which appears in the statement of Corollary 1
should be considered as a supremum.

4.4 Random initial condition

Assume that the vector v is a random vector with a random size n such
that v is independent from all other stochastic objects of the model. An
application of (19) with proper conditioning implies that

EEL(x,v) = E
nx

1− ρ
=

xEn
1− ρ

. (37)

In addition, observe that for every x1, x2 ≥ 0:

Cov
(
E
[
EL(x1,v)

∣∣∣v],E[EL(x1 + x2,v)
∣∣∣v]) (38)

= Cov
( nx1
1−ρ

,
n(x1 + x2)

1−ρ

)
=
x1(x1 + x2)Var(n)

(1− ρ)2
.

Therefore, a proper conditioning with the help of (23) and the law of total
covariance yields that

Cov
(
EL(x1,v), EL(x1 + x2,v)

)
=
x1(x1 + x2)Var(n)

(1− ρ)2

+
λµ2

(1− ρ)3

{
x1En+ E

[ n∑
k=2

k−1∑
l=1

(
(x1−vl,k)+ + (x1−(x2−vl,k)−)+

)]}
.
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Especially, by setting x1 = x ≥ 0 and x2 = 0, deduce that:

Var
[
EL(x,v)

]
=
x2Var(n)

(1− ρ)2
+

λµ2
(1− ρ)3

xEn+ 2E
∑

1≤l<k≤n

(x−vl,k)+
 .

(39)
Moreover, observe that for every x ≥ 0,

Cov
(
E
[
EL(x,v)

∣∣∣v],E[EF (x,v) ∣∣∣v]) = Cov
( nx

1−ρ
,
λx

1−ρ
(
v +

x

2

))
=

λx2

(1− ρ)2
Cov(n, v) ,

and hence the law of total variance can be used to find that

Cov (EL(x,v), EF (x,v))

=
λx2

(1− ρ)2
Cov(n, v) +

(1−ρ)ρ+λ2µ2
(1−ρ)3

{
x2En− 1

2
E

n∑
k=1

((wk + x− v)+)2

}
.

4.4.1 The stationary distribution as an initial condition

Assume that v is distributed according to the stationary distribution of
the remaining service times and the queue length under the LCFS-PR. By
applying [25, Corollary 1] and PASTA, this distribution is as follows:

1. n is a geometric random variable, i.e.,

P {n = s} = (1− ρ)ρs , s ≥ 0 . (40)

2. For every s ≥ 1, (v1, v2, . . . , vs)|{n = s} is a random vector with iid
coordinates such that v1 is distributed according to the residual time
distribution of G(·).

Consequently, (37) implies that

EEL(x,v) =
xEn
1− ρ

=
xρ

(1− ρ)2
(41)

which yields a new derivation for [17, Theorem 2.2]. Also, (39) yields the
following result.
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Proposition 1 If the service distribution is exponential with rate ν such
that λ

ν < 1, then the variance of the externalities in the stationary LCFS-
PR M/G/1 queue is equal to

xρ

(1−ρ)4
(x+λµ2) +

2µ2λρ
2

(1−ρ)5

[
x+

µ1
1−ρ

(
e−(1−ρ)x/µ1−1

)]
. (42)

Proof: For each i ≥ 1, let Xi be a random variable which is distributed
according to

Fi(u) ≡ 1−
i−1∑
j=0

e−νu(νu)j

j!
, u ≥ 0, (43)

i.e., an Erlang distribution with shape i and rate ν. Then, conditioning on
n yields:

E
∑

1≤l<k≤n

(x− vl,k)
+ =

∞∑
s=2

(1− ρ)ρs
∑

1≤l<k≤n

E
[
(x−vl,k)+|n = s

]
=

∞∑
s=2

(1− ρ)ρs
∑

1≤l<k≤s

{
xP {Xk−l < x} − EXk−l1{Xk−l < x}

}

=
∞∑
s=2

(1− ρ)ρs
s−1∑
i=1

(s− i)

{
xP {Xi < x} − EXi1{Xi < x}

}

=
∞∑
s=2

(1− ρ)ρs
s−1∑
i=1

(s− i)

{
xFi(x)−

∫ x

0

νiuie−νu

(i−1)!
du

}

=
∞∑
s=2

(1− ρ)ρs
s−1∑
i=1

(s− i)

{
xFi(x)−

i

ν
Fi+1(x)

}

= (1− ρ)
∞∑
i=1

∞∑
j=1

jρi+j

{
xFi(x)−

i

ν
Fi+1(x)

}

=
1

(1− ρ)

∞∑
i=1

ρi+1

{
xFi(x)−

i

ν
Fi+1(x)

}

=
1

(1− ρ)

∞∑
i=1

ρi

{
ρxFi(x)−

(i− 1)

ν
Fi(x)

}
. (44)

It is well-known that a compound geometric distribution with a probability
of success p and an exponential distribution with rate ν is an exponential
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distribution with rate pν, and hence

∞∑
i=1

ρiFi(x) =
ρ

1− ρ

∞∑
i=1

(1− ρ)ρi−1Fi(x) =
ρ

1− ρ

(
1− e−(1−ρ)νx

)
.

This identity may also be used to obtain that

∞∑
i=1

iρiFi(x) = ρ
d

dρ

( ∞∑
i=1

ρiFi(x)

)
= ρ

d

dρ

(
ρ

1− ρ

(
1− e−(1−ρ)νx

))
=

ρ

(1− ρ)2
(
1− e−(1−ρ)νx

)
− ρ2νx

1− ρ
e−(1−ρ)νx .

Thus, the expression in (44) equals

ρ2

ν(1− ρ)3

{
e−(1−ρ)νx − 1 + xν(1− ρ)

}
.

Insertion of this formula into (39) yields the desired result.

Remark 9 The variance of the externalities is very sensitive to a high traffic
load. Concretely, notice that

x+
µ1
1−ρ

(
e−(1−ρ)x/µ1−1

)
=

∞∑
k=1

(−x)k+1

(k + 1)!µk1
(1− ρ)k

and hence Var
[
EL(x,v)

]
is of the order (1− ρ)−4 as ρ ↑ 1.

5 Rates of increase

By definition x 7→ EL(x,v) and x 7→ EF (x,v) are both nondecreasing
stochastic processes. The following theorem gives the rates of increase.

Theorem 2 For every v (with nonnegative coordinates whose sum is posi-
tive), the following statements hold with probability one:

1.
EL(x,v) ∼

x

1− ρ
as x→ ∞ . (45)

2.

λ

4(1− ρ)
≤ lim

x→∞
inf

EF (x;v)
x2

≤ lim
x→∞

sup
EF (x;v)
x2

≤ λ

(1− ρ)
. (46)
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Remark 10 Note that Theorem 2 states that x 7→ EL(x,v) (resp. x 7→
EF (x,v)) increases at the same rate in which x 7→ EEL(x,v) (resp. x 7→
EEF (x,v)) increases (see (19) and also [23, Eq. (28)]).

Remark 11 It is important to notice that the rate which is stated in (45)
and the bounds on the rate which are given in (46) are all uniform in v.
Since EEL(x,v) is invariant with respect to v (see (19)), it is not surprising
that v has no effect on the first order approximation of x 7→ EL(x,v) as
x → ∞. However, [23, Eq. (28)] implies that v influences EEF (x,v) and
hence we suspect that the bounds in (46) are sub-optimal.

Remark 12 Theorem 2 implies that

sup {x ≥ 0; EL(x,v) ≥ EF (x,v)} (47)

is finite with probability one.

Proof: [Theorem 2] Consider some x > 0 and observe that for each
1 ≤ k ≤ n, Theorem 1 and the renewal reward theorem imply that with
probability one:

Ek(x,v)

x
= 1 +

S1(x+ wk)− S1(wk)

x
(48)

= 1 + x−1

Nλ(x+wk)∑
i=Nλ(wk)+1

Bi

= 1 + x−1

Nλ(x+wk)−Nλ(wk)∑
i=1

Bi+Nλ(wk)

x→∞−−−→ 1 +

µ1

1−ρ

1/λ
=

1

1− ρ
. (49)

This yields (45) via summation over k.
In addition, observe that Theorem 1 and the renewal reward theorem

might be applied once again in order to deduce that with probability one:

EF (x,v)
x2

= x−2

∫ x

0
S2(v + y)dy (50)

≤ x−1S2(v + x)

=
x+ v

x
· 1

x+ v

Nλ(v+x)∑
i=1

Ni
x→∞−−−→

1
1−ρ

1/λ
=

λ

1− ρ
.
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In a similar fashion, deduce that for every α ∈ (0, 1) with probability one:

EF (x,v)
x2

= x−2

∫ x

0
S2(v + y)dy (51)

≥ x−2

∫ x

αx
S2(v + y)dy

≥ (1− α)(v + αx)

x
· 1

v + αx
S2(v + αx)

x→∞−−−→ α(1− α) ·
1

1−ρ

1/λ
=
α(1− α)λ

1− ρ
.

Finally, an insertion of α = 1
2 completes the proof.

6 Tail asymptotics

Our goal in this section is to determine the tail behavior of EL(x,v) and
EF (x,v) in the case of heavy-tailed service times. Consider x > 0 and for
every distribution function F (·), denote F ≡ 1−F . In addition, let ⋆ denote
a convolution between two distribution functions. In this section, we assume
that G(·) is subexponential, i.e.,

G ⋆ G(u) ∼ 2G(u) as u→ ∞. (52)

We have already seen that the M/G/1 busy period length B plays a key
role in EL(x,v), and that the corresponding number of customers N in that
busy period plays a key role in EF (x,v). In the literature it was first shown
[8] for the M/G/1 queue with regularly varying service times (a subclass of
the class of subexponential distributions) that

P {B > u} ∼ 1

1− ρ
G [u(1− ρ)] as u→ ∞ . (53)

Exactly the same result was subsequently derived for the larger classes of
intermediate regularly varying service times [33] and of service times with a
tail that is heavier than e−

√
u; see [24] and finally [2]. An explanation why

it is impossible to get (53) when G(u) is lighter than e−
√
u as u → ∞ can

be found in [1, Section 6.2].
More or less equivalently, very similar conditions (basically either inter-
mediate regular variation or a tail heavier than e−

√
u, and some moment

conditions) have been provided [10, 9] under which

P {N > u} ∼ 1

1− ρ
G

[
u(1− ρ)

λ

]
as u→ ∞ . (54)
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The precise conditions for both formulas to hold are rather delicate; for
details we refer to Theorem 1.2 of [2] (for B) and Proposition 3.2 of [9] (for
N). In the remainder of this section we assume that these conditions are
satisfied, so that (53) and (54) hold. For clarity, the statements of the main
results (Theorems 3 and 4) appear in Subsection 6.1 while the proofs are
included in Subsection 6.2.

6.1 Results and some open problems

6.1.1 LCFS-PR

Assume that v = (v1, v2, . . . , vn) is such that vi > 0 for every 1 ≤ i ≤ n.
For the statement of the upcoming Theorem 3, we introduce the set D ≡
{w1, . . . , wn} ∪ {w1 + x, . . . , wn + x} and its cardinality d ≡ |D|. Also, let
w̃1 < w̃2 < . . . < w̃d be the elements of D in an increasing order and for
each 1 ≤ j ≤ d − 1, let qj be the number of k’s (1 ≤ k ≤ n) such that
[w̃j , w̃j+1] ⊆ [wk, wk + x], i.e.,

qj ≡ |{1 ≤ k ≤ n;wk ≤ w̃j , w̃j+1 ≤ wk + x}| . (55)

Respectively, denote the set J ≡ {1 ≤ j ≤ d− 1; qj > 0} which is not empty.
To see that, if 1 ≤ j ≤ d − 1 and w̃j = wk for some 1 ≤ k ≤ n, then
w̃j+1 ≤ wk + x and hence [w̃j , w̃j+1] ⊆ [wk, wk + x] which implies that
qj ≥ 1.

Theorem 3 Assume that (53) holds. Then:

1. For each 1 ≤ k ≤ n, Ek(x,v) has a subexponential distribution such
that

P {Ek(x,v) > u} ∼ λx

1− ρ
G [u(1− ρ)] as u→ ∞ . (56)

2. EL(x,v) has a subexponential distribution such that

P {EL(x,v) > u} ∼ λ

1− ρ

∑
j∈J

(w̃j+1 − w̃j)G

[
u(1− ρ)

qj

]
as u→ ∞ .

(57)

Remark 13 Since G(·) is nonincreasing, (57) implies that

P {EL(x,v) > u} = Θ

{
G

[
u(1− ρ)

max {qj ; j ∈ J }

]}
as u→ ∞ . (58)

This means that as u→ ∞, P {EL(x,v) > u} vanishes at the same rate (up

to a multiplicative constant) that G
[

u(1−ρ)
max{qj ;j∈J}

]
tends to zero.
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Remark 14 Observe that EL(x,v) =
∑n

k=1Ek(x,v) is a sum of dependent
random variables. There is an extensive literature about the tail asymp-
totics of sums of dependent random variables, e.g., [14, 18, 31, 32] and the
references therein. Having said that, we are not aware of any existing result
which might be useful in order to prove Theorem 3.

6.1.2 FCFS

The analogue of Theorem 3 for the externalities under the FCFS discipline
is the following Theorem 4.

Theorem 4 Assume that (54) holds. In addition, denote

ω1 ≡
∫ 1

0
lim inf
u→∞

G(u/y)

G(u)
dy , ω2 ≡

∫ 1

0
lim sup
u→∞

G(u/y)

G(u)
dy . (59)

Then EF (x,v) has a subexponential distribution such that

λ (v + xω1)

(1− ρ)
≤ lim inf

u→∞

P {EF (x,v) > ux}

G
[
ux(1−ρ)

λ

] (60)

≤ lim sup
u→∞

P {EF (x,v) > ux}

G
[
ux(1−ρ)

λ

] ≤ λ (v + xω2)

(1− ρ)
.

Remark 15 There are cases in which ω1 = ω2. In such cases, Theorem 4
yields a first order approximation of the tail distribution of EF (x,v). For
example, when G(·) is regularly varying, i.e.,

G(u) ∼ L(u)u−α as u→ ∞ (61)

for some α > 0 and L : (0,∞) → (0,∞) such that L(uy) ∼ L(u) as u → ∞
for every y > 0 (i.e., L(·) is slowly varying at infinity). In that case, standard
calculations yield that ω1 = ω2 =

1
1+α .

6.1.3 Open problem: Is E(x,v) bivariate regularly varying?

Theorem 3 and Theorem 4 include certain conditions on heavy-tailed G(·)
under which the (univariate) tail distributions of EL(x,v) and EF (x,v) are
just as heavy as G(·). It would be interesting to also study the bivariate tail
asymptotics of (EL(x,v), EF (x,v)). For example, assume that G(·) is regu-
larly varying; does it imply that the joint distribution of (EL(x,v), EF (x,v))
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is also regularly varying? For details about regularly varying random vec-
tors, see, e.g., [27, Section 2].

We believe that this query should start by figuring out whether a regu-
larly varyingG(·) implies a bivariate regularly varying distribution of (B,N).
Then, once such a relation is established, it might be applied in order to de-
rive conditions on the service distribution under which the distribution of
(EL(x,v), EF (x,v)) is bivariate regularly varying. To the best of our knowl-
edge, there are no existing results in this direction.

6.1.4 Open problem: the stationary distribution as an initial con-
dition

If the additional customer arrives when the M/G/1 LCFS-PR queue is in
steady state, then she sees a geometric(ρ) distributed number of customers
(cf. Subsection 4.4.1). If, moreover, the service time of the additional cus-
tomer has distribution G(·), then all customers already present experience
the same M/G/1 busy period as extra delay. One can now use the above-
mentioned known results about the tail behavior of such a busy period to
conclude that the externalities distribution is just as heavy-tailed as G(·).
For FCFS, however, the situation is more complicated. Now the remaining
workload v of the customers already present plays a role in the externali-
ties. Considering the tail behavior of (cf. (10))

∫ v+x
v S2(y)dy when v, x are

heavy-tailed random variables, the ‘principle of the one big jump’ (cf. [13])
suggests that the workload v will be dominant, and will determine the tail
behavior of the externalities. For example, when G(·) is a regularly varying
function at infinity of index −ν ∈ (−2,−1), then the steady-state workload
v is regularly varying of index 1 − ν [6], and we conjecture that EF is then
also regularly varying at infinity of index 1− ν, i.e., one degree heavier than
the service time and the busy period.

6.2 Proofs

In general, the proof of Theorem 3 (resp. Theorem 4) is based on the
decomposition which was stated in Theorem 1 (resp. [23, Theorem 2]) with
an application of some known results from the theory about subexponential
distributions. The next lemma is a summary of the existing results which
are needed.

Lemma 1 Assume that X is a nonnegative random variable with a subex-
ponential distribution. In addition, let Y be a nonnegative random variable
which is independent from X. Then:
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(i) For every h > 0, hX also has a subexponential distribution.

(ii) For every h > 0,

P {X > u} ∼ P {X > u+ h} as u→ ∞ . (62)

(iii) If Y is bounded, then XY has a subexponential distribution.

(iv) Assume that Y is unbounded and there are 0 < z1 < z2 <∞ such that

z1 ≤
P {X > u}
P {Y > u}

≤ z2 (63)

for every u > 0. Then, Y has a subexponential distribution.

(v) Assume that Y is unbounded such that

sup
u>0

P {Y > u}
P {X > u}

<∞ , (64)

and for every h > 0,

P {Y > u} ∼ P {Y > u+ h} as u→ ∞ . (65)

Then,

P {X + Y > u} ∼ P {X > u}+ P {Y > u} as u→ ∞ . (66)

(vi) Assume that Y is distributed according to a Poisson distribution with
rate γ > 0. If X,X1, X2, . . . is an iid sequence of random variables,
which are independent from Y , then SY ≡ X1 +X2 + . . .+XY has a
subexponential distribution such that

P {SY > u} ∼ γP{X > u} as u→ ∞ . (67)

Proof: [Lemma 1] (i) is an immediate consequence of the definition in
(52). (ii) is [13, Lemma 3.2], (iii) is [4, Corollary 2.5], (iv) is due to [26,
Theorem 2.1(a)], (v) is [12, Lemma 2] and (vi) is due to [11, Theorem 3].

Proof: [Theorem 3] We provide only a proof for (57) since the proof
of (56) follows from similar arguments and it is more standard.

It is given that G(·) is subexponential. Thus, due to (53), Lemma 1(iv)
implies that B has a subexponential distribution. Next, for every 1 ≤ i ≤
d− 1, denote

Ŝi ≡ S1(w̃i+1)− S1(w̃i) . (68)
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Therefore, Theorem 1 yields that

P {EL(x,v) > u} = P

{
n∑

k=1

[S1 (x+ wk)− S1 (wk)] > u− nx

}

= P

∑
j∈J

qjŜj > u− nx

 . (69)

Notably, since S1(·) has stationary independent increments, then:

1.
{
qjŜj ; j ∈ J

}
is a collection of independent random variables.

2. For each j ∈ J , the random variable qjŜj has a compound Poisson
distribution with rate λ (w̃j+1 − w̃j) and jumps which have the distri-
bution of qjB.

Especially, observe that for each j ∈ J , Lemma 1(vi) and the fact that qjB
has a subexponential distribution (due to Lemma 1(i)) imply that qjŜj has
a subexponential distribution such that

P
{
qjŜj > u

}
∼ λ (w̃j+1 − w̃j)P {qjB > u}

∼ λ (w̃j+1 − w̃j)

1− ρ
G

[
u(1− ρ)

qj

]
as u→ ∞ . (70)

Let r ≡ |J | and without loss of generality assume that q1 ≤ q2 ≤ . . . ≤
qr. In particular, observe that for every 1 ≤ i1 < i2 ≤ r,

sup
u>0

G
[
u(1−ρ)
qi1

]
G
[
u(1−ρ)
qi2

] ≤ 1 . (71)

Thus, Lemma 1(v) implies that

P

{
2∑

i=1

qiŜi > u

}
∼ λ

1− ρ

2∑
j=1

(w̃j+1 − w̃j)G

[
u(1− ρ)

qj

]
as u→ ∞ . (72)

In particular, (72) and the assumption that G(·) is subexponential imply
that q1Ŝ1 + q2Ŝ2 is a nonnegative random variable which is independent
from q3Ŝ3 and satisfies the condition (65). Therefore, Lemma 1(v) with (71)
may be applied once again in order to deduce that

P

{
3∑

i=1

qiŜi > u

}
∼ λ

1− ρ

3∑
j=1

(w̃j+1 − w̃j)G

[
u(1− ρ)

qj

]
as u→ ∞ (73)
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such that q1Ŝ1 + q2Ŝ2 + q3Ŝ3 is a nonnegative random variable which is
independent of q4Ŝ4 and satisfies the condition (65). Then, this argument
may be repeated until getting

P

{
r∑

i=1

qiŜi > u

}
∼ λ

1− ρ

r∑
j=1

(w̃j+1 − w̃j)G

[
u(1− ρ)

qj

]
as u→ ∞ (74)

such that
∑r

i=1 qiŜi satisfies the condition (65). Therefore, (57) follows via

(69) with Lemma 1(ii). Finally, since qrŜr has a subexponential distribu-
tion, (57) implies that EL(x,v) has a subexponential distribution via Lemma
1(iv) (see also Remark 13).

The proof of Theorem 4 is based on an application of [23, Theorem 2] which
is now provided.

Theorem 5 [Jacobovic & Mandjes 2022]
Assume thatM1, M2, (ψm,1)

∞
m=1, (ψm,2)

∞
m=1, (φm)∞m=1 are independent ran-

dom variables such that:

1. M1 ∼ Poi(λv) and M2 ∼ Poi(λx).

2. (ψm,1)
∞
m=1 and (ψm,2)

∞
m=1 are two iid sequences of random variables

which are distributed like N .

3. (φm)∞m=1 is an iid sequence of random variables which are distributed
uniformly on [0, 1].

Then,

EF (x,v)
d
= x

(
M1∑
m=1

ψm,1 +

M2∑
m=1

ψm,2φm

)
. (75)

Proof: [Theorem 4] Assume that v > 0. Otherwise, when v = 0, the
proof follows from the same arguments and becomes much simpler.

Consider the random variables which appear in the statement of Theo-
rem 5. In addition, G(·) has a subexponential distribution such that (54) is
valid and hence Lemma 1(iv) implies that N has a subexponential distribu-
tion. Therefore, Lemma 1(vi) implies that

∑M1
m=1 ψm,1 has a subexponential

distribution such that

P

{
M1∑
m=1

ψm,1 > u

}
∼ λv

1− ρ
G

[
u(1− ρ)

λ

]
as u→ ∞ . (76)
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In addition, as it was shown above, ψ1,2 has a subexponential distribution
and φ1 is bounded from above. As a result, Lemma 1(iii) implies that ψ1,2φ1

has a subexponential distribution. Consequently, Lemma 1(vi) yields that∑M2
m=1 ψm,2φm has a subexponential distribution such that

P

{
M2∑
m=1

ψm,2φm > u

}
∼ λxP {ψ1,2φ1 > u} as u→ ∞ . (77)

To evaluate the probability in the RHS, Fatou’s lemma and (54) yield

lim inf
u→∞

P {ψ2,1φ1 > u}
P {ψ2,1 > u}

= lim inf
u→∞

∫ 1

0

P
{
N > u

y

}
P {N > u}

dy ≥ ω1 . (78)

In a similar fashion, we may apply the reverse Fatou’s lemma with (54) in
order to get

lim sup
u→∞

P {ψ2,1φ1 > u}
P {ψ2,1 > u}

= lim sup
u→∞

∫ 1

0

P
{
N > u

y

}
P {N > u}

dy ≤ ω2 . (79)

Now, for every u > 0

P
{∑M2

m=1 ψ2,mφm > u
}

P
{∑M1

m=1 ψ1,m > u
} ≤

P
{∑M2

m=1 ψ2,m > u
}

P
{∑M1

m=1 ψ1,m > u
} , (80)

and observe, using Lemma 1(vi), that the upper bound in (80) converges to
x
v as u→ ∞. Therefore, deduce that

sup
u>0

P
{∑M2

m=1 ψ2,mφm > u
}

P
{∑M1

m=1 ψ1,m > u
} <∞ (81)

and hence Lemma 1(v) implies that

P {EF (x,v) > ux} ∼ λv

1− ρ
G

[
ux(1− ρ)

λ

]
+ λxP {ψ1,2φ1 > ux} as u→ ∞

(82)
from which (60) follows.

Due to Lemma 1(iv), this yields that EF (x,v)/x has a subexponential
distribution, and hence EF (x,v) also has a subexponential distribution via
Lemma 1(i).
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7 Functional CLT

The model which was described in Section 2 is characterized by the triplet
(λ,G(·),v). Fix v = (v1, . . . , vn) with positive coordinates, and consider a
sequence (in m) of models

(λm, Gm(·),v), m ≥ 1 ,

such that the m-th model is associated with an arrival rate λm and service
distribution Gm(·). Respectively, for each m ≥ 1 denote:

µk,m ≡
∫ ∞

0
tkdGm(t), k ≥ 1,

ρm ≡ λmµ1,m .

In addition, for each m ≥ 1, denote the externalities processes under LCFS-

PR in the m-th model by E(m)
L (·,v, n) and let Bm be a random variable

which is distributed like the length of the busy period in the m-th model.
In particular, the fixed-point relation (28) yields that for each m ≥ 1 (see
also [5, p. 251, (II.4.66)]

σm ≡ EB2
m =

µ32,m
(1− ρm)3

, (83)

νm ≡ EB3
m =

1

(1− ρm)5
[
3λmµ

2
2,m + µ3,m(1− ρm)

]
, (84)

and hence

νm√
λmσ3m

= 3

√
λm

µ52,m(1− ρm)
+
µ3,m
µ4.52,m

√
1− ρm
λm

, m ≥ 1 . (85)

Theorem 6 For m ≥ 1, define a stochastic process (in x):

Ê(m)
v (x) ≡

E(m)
L (x,v)− EE(m)

L (x,v)√
λmσm

, x ≥ 0 .

In addition, let W (·) be a standard Wiener process on [0,∞) and define a
stochastic process (in x):

Hv ≡
n∑

k=1

[W (x+ wk)−W (wk)] , x ≥ 0 .

Assume that all of the following conditions are satisfied:
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(I) λm → ∞ as m→ ∞,

(II) There is m′ ≥ 1 such that ρm < 1 for every m ≥ m′,

(III) νm√
λmσ3

m

→ 0 as m→ ∞ .

Then,

Ê(m)
v (·) ⇒ Hv(·) as m→ ∞ ,

where ⇒ denotes weak convergence on D[0,∞) equipped with the uniform
metric (on compacta).

Proof: For each m ≥ 1, let S(m)(·) be a compensated compound Poisson
process with rate λm and jumps which are distributed like Bm.

Let K > 0 and according to [23, Theorem 5], existence of Conditions
(I)-(III) all together implies that

S(m)(·)√
λmσm

⇒W (·) as m→ ∞,

where ⇒ denotes weak convergence in D[0,∞) equipped with the uniform
metric on compacta. Since the limit process is concentrated on C[0, x +
v], the representation theorem [30, Theorem IV.13] yields that there is a

probability space with stochastic processes W̃ (·) and
{
S̃m(·);m ≥ 1

}
such

that:

1. W̃ (·) d
=W (·).

2. S̃m(·) d
= S(m)(·) for every m ≥ 1.

3.

lim
m→∞

sup
0≤y≤v+x

∣∣∣∣∣ S̃m(y)√
λmσm

− W̃ (y)

∣∣∣∣∣→ 0 , w.p. 1 . (86)

Then, notice that

sup
0≤x≤K

∣∣∣∣∣ 1√
λmσm

n∑
i=1

[
S̃1(x+ wi)− S̃1(wi)

]
−

n∑
i=1

[W (x+ wi)−W (wi)]

∣∣∣∣∣
≤ 2n sup

0≤y≤v+x

∣∣∣∣∣ S̃m(y)√
λmσm

− W̃ (y)

∣∣∣∣∣ , (87)
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and the RHS tends to zero with probability one. As a result, due to The-

orem 1, deduce that the sequence of processes Ê(m)
v (·) admits weak conver-

gence to Hv(·) on D[0,K] equipped with the uniform metric. Since this
convergence holds for every positive K and the limiting process Hv(·) is
concentrated in C[0,∞), this convergence can be extended to D[0,∞) via
[30, Theorem V.23] and the result follows.

7.1 The conditions

The pre-conditions of Theorem 6 are not straightforward. Namely, Condi-
tion (I) states that λm → ∞ as m → ∞. Thus, Condition (II) implies that
µ1,m vanishes as m → ∞. In addition, since λm → ∞ as m → ∞, it must
be that µ2,m → ∞ as m→ ∞ in order to make the first term of (85) vanish
as m→ ∞.

Below, there is an example in which the pre-conditions of Theorem 6
are all satisfied. This illustrates that Theorem 6 is informative. Having said
that, it might be interesting to look for more general conditions under which
the asymptotic distribution of the externalities process can be identified.

7.1.1 Example

For each m ≥ 1, assume that Gm(·) is a distribution function of a random
variable τm such that

τm ≡

{
0 w.p 1−m−p

mk w.p m−p
(88)

for some p, k > 0. Then, for each m ≥ 1, observe that

µ1,m = mk−p , µ2,m = m2k−p , µ3,m = m3k−p . (89)

Also, let λm ≡ qmp−k for some q ∈ (0, 1). Thus, in order to ensure that
Condition (I) is satisfied, require that p > k and observe that ρm = q which
means that Condition (II) is also valid. It is left to check Condition (III).
To this end, note that

λm
µ52,m(1− ρm)

=
q

1− q
m6p−11k (90)

and hence we require 6p− 11k < 0. Similarly, note that

µ3,m
µ4.52,m

√
1− ρm
λm

= m−5.5k+3p

√
1− q

q
(91)

29



and hence we require −5.5k + 3p < 0. Thus, for any p, k > 0 such that
6p
11 < k < p, all the pre-conditions of Theorem 6 are satisfied. Indeed, one
may verify that for such p and k, we get that µ1,m → 0 as m → ∞ and
µ2,m → ∞ as m→ ∞.

7.2 Open problem: Is E(x,v) asymptotically Gaussian?

Theorem 6 is a functional CLT for the process x 7→ EL(x,v). In previ-
ous work [23, Theorem 4], there is an analogous result for x 7→ EF (x,v).
Both of these univariate results are based on the bivariate decomposition
which is given in Theorem 1 with an application of [23, Theorem 5]. Since
the decomposition in Theorem 1 is bivariate, it looks promising to reach a
unified version of both of these results, i.e., a bivariate functional CLT of
x 7→ (EL(x,v), EF (x,v)). The proof of such a result might be based on a
complicated bivariate version of [23, Theorem 5] which should be developed.
Since we prefer not to shift the balance of the current work by developing
this generalization of [23, Theorem 5], here we just mention the possibility
of having a bivariate functional CLT of x 7→ (EL(x,v), EF (x,v)) in passing.

8 Discussion

This work concerns the externalities in an M/G/1 queue under the LCFS-
PR and FCFS disciplines. The cornerstone of the current analysis is The-
orem 1: The externalities have a joint decomposition in terms of a bivari-
ate compound Poisson process with an arrival rate λ and jumps which are
distributed like (B,N). We demonstrated that this decomposition is use-
ful via several applications, including: moments computations, externalities
approximations as x→ ∞, tail asymptotics of the externalities and a func-
tional CLT. The rest of this section is dedicated to a discussion about the
special meaning of the externalities analysis under FCFS and LCFS-PR.

Observe that when FCFS is implemented, then the additional customer
affects only customers who arrive after him. On the contrary, when LCFS-
PR is implemented, the additional customer would affect only the customers
who arrived before him. In that sense, FCFS and LCFS-PR are edge cases.
As demonstrated in Subsection 3.2, there are service disciplines under which
the additional customer affects both some customers who were in the queue
at time t = 0 as well as some other customers who arrive after this time.
The externalities in these intermediate cases have not been analysed. It
might be interesting to examine in what sense their properties mitigate the
properties of the externalities under FCFS and LCFS-PR.
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