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Clustering/Community Detection Problem

> Communities are densely connected parts of a network

[Abbe 18]

> Divide the graph into communities from unlabelled graph. This is an
unsupervised learning task



Applications

Community detection is a central problem in machine learning and data mining...

Numerous applications in ...
=» Recommender system [Wu, Xu, Srikant, Massoulié, Lelarge, & Hajek "15]
=» Webpage sorting [Kumar, Raghavan, Rajagopalan, & Tomkins ‘9]

=» Functionalilty of Human Brain [Martinet, Kramer, Viles, Perkins, Spencer,
Chu, Cash & Kolaczyk "20]

=» Social networks [Goldenberg, Zheng, Fienberg, & Airoldi "10]

> Huge literature has developed in past two decades from TCS, ML, Stats..



Objective of this minicourse

Two high-level questions:

1. When is recovering clusters possible/impossible? (Information
theoretic limit)

2. Are there fast and optimal algorithms to recover clusters

> Will dive deep into a sharp phase transition for exact recovery

References

1. E. Abbe, Community Detection and Stochastic Block Models: Recent
Developments. Journal of Machine Learning Research (2018)
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Stochastic Block Model

Parameters.

> Number of communities: k > 2

> Communities sizes: p = (p1,...,Ppx), a probability vector with p; >0
> Probability matrix: Q, a k x k symmetric matrix

> Sparsity pn

Generative Model. SBM(n, k, p, pn Q)
iid
> Generate 0: o(u) ~ p for each vertex u € [n]

> Generate G: Add edge {u, v} with probability pn Qs (y)s(v) (independent)

= A Symmetric SBM corresponds to the case where p; = % and Qi = a if
i=jand Qi =bifi #j

Statistical Task. Suppose (G, o) ~ SBM(n, K, p, pn Q). We observe G = g, but
0 is unknown.

Find a “good” estimator &




Different modes of recovery

Agreement: A(o, 6) := maxycs, % > 4 L{o(u) = n(6(w))}, where Sy is
the set of permutations of [k] :={1,...,k}

Partition associated with 0,6: £; ={u:o(u) =1i},and £ ={X¢,..., I}, and
5 is defined similarly for &
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Agreement: A(o, 6) := maxycs, % > 4 L{o(u) = n(6(w))}, where Sy is
the set of permutations of [k] :={1,...,k}

Partition associated with 0,6: £; ={u:o(u) =1i},and £ ={X¢,..., I}, and
5 is defined similarly for &

Exact Recovery: limn oo IP(A(0,6) =1) =1, or limy o P(X = £)=1

Sharp phase transition for pn = logln

Almost Exact Recovery: limp_,o P(A(0,6) > 1—¢e,) =1 for some e, — 0

Possibility depends on npyn — oo or not
Partial Recovery: Definition slightly tricky, but for symmetric SBMs...
. R 1
lim P(A(c,6) > «) for some « € (7,1)
n—oo k

Sharp phase transition for pn =

n



Exact Recovery



Maximum A Posteriori (MAP) Estimator

> Maximum A Posteriori (MAP) estimator, denoted by $\uap, solves the
following maximization problem:
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Maximum A Posteriori (MAP) Estimator

> Maximum A Posteriori (MAP) estimator, denoted by $\uap, solves the
following maximization problem:

maximize P(£ =S| G =g) overall partitions S ={Sq,..., Sk}

If there are multiple maximizers, pick one uniformly among them

Lemma: For any estimator &, P #Z) <P(E#£X)

Hence, Exact recovery is possible <= $viap succeeds whp

Let’s try to find Snp in a simple scenario...
1. Syap is computationally intractable

2. The distribution of £y is difficult to analyze
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Genie-based Estimator

Genie-based (hypothetical) estimator:

To estimate o(u)

> Suppose genie tells us 0, = (0(V))y£y
> Compute MAP with genie’s added info

A

0-genie (u) = argmaxie[k} IP(O'(U,) =1 | G= 9, 0-711.)

= argmax;cp P(G =gl o(u) =1 0-u)p: /@
)pi é{ N

= argmax; [y P(D(u)=d|o(u)=10_v

= D(u) = (Dq(u),...,Dg(u)) is degree profile
Dj(u):= # edges from u to community j
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Error probability for the genie-based estimator

Fact: 15 Pe < P(8yeme(ut) # o(u) | 0_y) < Pe, where

Pe = min{P(D(u) = d [ o(u) =1,0-u)pi, P(D(u) = d | o(u) =j,0-)pj}
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Error probability for the genie-based estimator

Fact: 15 Pe < P(8yeme(ut) # o(u) | 0_y) < Pe, where

Pe = min{P(D(u) = d | o(u) =1,0-u)pi, P(D(u) = d| o(u) =j,0-u)pj}

Lemma 1 [Abbe, Sandon "15]
If (G, 0) ~SBM(n, k,p, pnQ) and py, = IOgn , then w.p. > 1—e 2(n°)

5 PQ )0 ( lop,logn)
Pe =

logn.
where

I(p,Q) = mm CH((p1Qiv)rem I (P1Qjv)rex))

H(p || v) _trélg)i ZV ( ) fely) =1—t+ty—y*
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Impossibility

Theorem 1

Suppose that (G, o) ~ SBM(n, k,p, pnQ) and pn = loin. If I(p, Q) < 1, then
for any estimator &,

nlgnoo P(6#0)=1 (Exact recovery impossible)

12



Impossibility

Theorem 1

Suppose that (G, o) ~ SBM(n, k,p, pnQ) and pn = lngln. If I(p, Q) < 1, then
for any estimator &,

nlgnoo P(6#0)=1 (Exact recovery impossible)

Example: Consider the symmetric SBM, i.e., Qij = aif i =j and Qy; = b for
i#j,and py = % and pn = 18" Then

(vVa—vb)?
k

= Exact recovery impossible

12



Finding good estimators

Can we find an estimator that is efficiently computable and achieves exact recovery
whenever 1(p, Q) > 17
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Finding good estimators

Can we find an estimator that is efficiently computable and achieves exact recovery
whenever 1(p, Q) > 17

Idea (Two-step estimator):

= Step 1: Good Guess. Take a good enough initial estimator, i.e., take &;
that achieves almost exact recovery

= Step 2: Clean up. Compute 67 (u) := Gyene(u, G, 67, ) forall u

Advantage: 67 is efficiently computable if 67 is so

Challenges:
1. How to find a good 67?

2. &1 depends on G, which makes 6. (1, G, 61,_,,) difficult to analyze.
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Graph-splitting

> (Gy, Gp) is constructed from G as follows:
1. Include each edge of G in G; w.p. yn (independently)
2. Gy = G\ G contains rest of the edges
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Graph-splitting

> (Gy, Gp) is constructed from G as follows:
1. Include each edge of G in G; w.p. yn (independently)
2. Gy = G\ G contains rest of the edges

Modified Two-step estimator: Compute e (U, G2, 611, (G1)) for all u

Lemma 2
Suppose that (G, o) ~ SBM(n, k,p, pnQ) and pn = loﬁn, and take
graph-splitting (G1, Gp) as above with 10; = <vyn < loil%.

> Suppose 67 = 67(G1) achieve almost exact recovery
> Take Gy ~ SBM(n, k,p, %Q)
Then for any w and d € Z¥, with high probability,
P(D(u;61,G2) =d| Gy, 81, -, 0(u) =1)
< (1+0(1))P(D(w;61,G2) =d | 6, , 0(u) =) +n

14



Achievability

Theorem 2
Suppose that (G, ) ~ SBM(n, k,p, pnQ) and pr = 5™, and take
graph-splitting (G, Gp) as above with lo;n <<vn K lolgol%~

> Suppose & = 61(G1) achieve almost exact recovery
Then,

I(p,Q) >1 = Gyenie(G2,61,—1,(G1)) achieves exact recovery

> Exact recovery is possible up to the information theoretic threshold if almost
exact recovery is possible for npn — oo

15



How to produce a good initial estimator?
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Approach 1: Sphere comparison

> Choose E by sampling from all edges with probability c (fixed)

> Let N,/ (v, v/, E) be the number of pairs of vertices (v1,v2) such that
vi € N;+(v,G\E),v» € N+ (v/,G\E), and {v;, v} € E

Noeng)(v)  Npgeong (v')
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Approach 1: Sphere comparison

> Choose E by sampling from all edges with probability c (fixed)

> Let N,/ (v, v/, E) be the number of pairs of vertices (v1,v2) such that
vi € N;+(v,G\E),v» € N+ (v/,G\E), and {v;, v} € E

Noa\e)(v)  Nyjavg(v')
> Idea of [Abbe, Sandon '15] is to use Ny ./ (v, v/, E) to come up with tests for
deciding whether v, v’ are in same community or not. For example, for
k = 2, compute

Lip (v, v/, E) = Npjor (v, v/, E) X Ny pr (v, v/, E) =Ny y 1 o/ (v, v/, E)?

Result [Abbe, Sandon "15]. Sphere comparison achieves almost exact recovery
for a suitable choice of 1, ¢ whenever np, — oo, Q is irreducible, and no two
rows of Q are identical

17



Day 2

18



Recap

> Interested in exact recovery of o when (G, o) ~ SBM(n, k, p, pnQ)
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Recap

> Interested in exact recovery of o when (G, o) ~ SBM(n, k, p, pnQ)

> Used Genie-based (hypothetical) estimator

Ggenie(u) = argmaxie[k] ]P(O-(u) =1 ‘ G= 9, Gfu)pl

= argmax; ) P(D(u) = d | o(u) =1,0-u)p;

> P (g (u) # o(u)) = n~1PQ)1+ol)

I(p,Q) <1 = Impossibility, I(p,Q) >1 = Possible?

> Graph-splitting: Compute 6;(u) = Gyene(W; Go, 6 (G1)) for all u

I(p,Q) > 1, and &7 achieves almost exact recovery for np, — oo

=> 0 achieves exact recovery

19



How to produce a good initial estimator?

Approach 1: Sphere comparison. [Abbe, Sandon '15] use Ny ./ (v,v/, E) to
come up with tests for deciding whether v, v’ are in same community or not.

For example, for k = 2, compute
L (v, v, E) = Ny jo/ (v, v/, E) x Ny (v, v/, E) = Ny yq (v, v/, E)?

2 242142 2 T 41
c“(1—c a—b / a—>b
( ])12 (d— 5 ) artr H(T) (21{o(u) = o(v)} — 1)

~
~

[Abbe, Sandon "15] proved that such sphere comparison achieves almost exact
recovery for a suitable choice of r,c whenever np, — oo, Q is irreducible,
and no two rows of Q are identical
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How to produce a good initial estimator?

Approach 1: Sphere comparison. [Abbe, Sandon '15] use Ny ./ (v,v/, E) to
come up with tests for deciding whether v, v’ are in same community or not.

For example, for k = 2, compute
L (v, v, E) = Ny jo/ (v, v/, E) x Ny (v, v/, E) = Ny yq (v, v/, E)?

2 242142 2 T 41
c“(1—c a—b / a—>b
( ])12 (d— 5 ) artr H(T) (21{o(u) = o(v)} — 1)

~
~

[Abbe, Sandon "15] proved that such sphere comparison achieves almost exact
recovery for a suitable choice of r,c whenever np, — oo, Q is irreducible,
and no two rows of Q are identical

Approach 2: Spectral Algorithms. Today’s focus

= Almost recovery when np, — oo

= Exact recovery up to information theoretic threshold
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Intuition: Spectral algorithm
Let A be the the adjacency matrix of G and A* = E[A | 0]

_ A* A%
A=A +[A-AY)

signal noise

> (A, (bi)}le and (A7, d)i*)lle be the top k eigenpairs of A, A* resp.
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— * __ A%
A=A +(A-AY)

signal noise

> (A, (bi)}.le and (A7, d)i*)lle be the top k eigenpairs of A, A* resp.

Fact: If O* = (¢7,..., b5 ) be n x k matrix, then

o(v)
o(v)
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Intuition: Spectral algorithm
Let A be the the adjacency matrix of G and A* = E[A | 0]

_ A* A%
A=A (A=A

signal noise
> (A, (bi)lf:l and (A}, d)i*)!le be the top k eigenpairs of A, A* resp.
Fact: If O* = (¢7,..., b5 ) be n x k matrix, then

o
o

0y, [~ (@ i otu) =
#(®)y,  if ofu) #

If [A—A*[ small = © ~ ®* o

:&. :. .
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Matrix perturbation theory

Let (Ai(X), d1(X)) be the i-th top eigenpair of X

Theorem [Davis, Kahan '70]

Suppose X, Xg are symmetric matrices with Xy has k distinct non-zero
eigenvalues. Then

1 . — . C||X_XO||2—>2
(i 1900 =s6: Xolll2 < R R = M K0), A (Ro) = Rera (Ko))

with Ag(Xg) = +00, Ak (Xg) = —o0o, for some absolute constant ¢ > 0

22



Spectral algorithm for almost exact recovery

Is ||A — A*||—2 < npn whp whenever npy, — 00?
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Spectral algorithm for almost exact recovery

Is ||A — A*||]a_y2 < npn whp whenever npy, — 00?

— NO, instead we can look at the trimmed matrix
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Spectral algorithm for almost exact recovery

Is ||A — A*||p—2 < npyn whp whenever npy, — 00?

— NO, instead we can look at the trimmed matrix

Spectral clustering: Compute &;
(S1) Construct A as

ij =

s Aij if d; or d]' < 2||QHoonpn
0 otherwise

(S2) Construct ® with top k eigenvectors of A
(S3) Apply k-means clustering on the rows of ®

Theorem

61 achieves almost exact recovery whenever npn, — co

=> 02 = Ogene(G1, 67) achieves exact recovery whenever I(p, Q) > 1
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We have shown

Spectral clustering + clean-up achieves exact recovery for I(p, Q) > 1

Do direct spectral algorithms achieve this optimal recovery?

Need an entrywise perturbation bound...

24



Entrywise perturbation bound

Assumptions.

(A1) Well-behaved mean matrix. A* has k distinct, non-zero eigenvalues
AT > -+ > AY with AY = O(A]). Moreover, for some y — 0 and
A =mini{A}_; — A7} with Aj = oo

HA*HZ—mo <vyA
(A2) Row-wise and column-wise independence. For any m € [n],
(Ayj :i=morj=m) is independent of (A :1# morj#m)
(A3) Spectral norm concentration. ||A —A* |22 < YA whp

(A4) Row concentration. :p : Ry — R4 (continuous, non-decreasing,

possibly depending on n) such that {(0) = 0,1{(1) = O(1), wix) is
non-increasing and for any m € [n],w € R™

[wll2

(A = A)m, W)l < Afw]leob (m

> w.p. >1-—omn™
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Entrywise perturbation bound

Assumptions.

(A1) Well-behaved mean matrix. A* has k distinct, non-zero eigenvalues
AT > -+ > AY with AY = O(A]). Moreover, for some y — 0 and
A =mini{A}_; — A7} with Aj = oo

HA*HZ—mo <vyA
(A2) Row-wise and column-wise independence. For any m € [n],
(Ayj :i=morj=m) is independent of (A :1# morj#m)
(A3) Spectral norm concentration. ||A —A* |22 < YA whp
(A4) Row concentration. :p : Ry — R4 (continuous, non-decreasing,

possibly depending on n) such that {(0) = 0,1{(1) = O(1), wix) is
non-increasing and for any m € [n],w € R™

{(A = A)m, W) <A||w||ww(%> wp. >1—on )

Theorem [Abbe, Fan, Wang, Zhong "20]

minge(s1) Hq;i —s 58| = o(9 ) whp for all i € K]
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