Community Detection from a Random Graphs perspective

Souvik Dhara

Purdue University, IE

Young European Probabilists Workshop 2024, EURANDOM

Day 1

Clustering/Community Detection Problem

> Communities are densely connected parts of a network

[Abbe '18]
$>$ Divide the graph into communities from unlabelled graph. This is an unsupervised learning task

Applications

Community detection is a central problem in machine learning and data mining...

Numerous applications in ...
\rightarrow Recommender system [Wu, Xu, Srikant, Massoulié, Lelarge, \& Hajek '15]
\rightarrow Webpage sorting [Kumar, Raghavan, Rajagopalan, \& Tomkins '99]
\rightarrow Functionalilty of Human Brain [Martinet, Kramer, Viles, Perkins, Spencer, Chu, Cash \& Kolaczyk '20]
\rightarrow Social networks [Goldenberg, Zheng, Fienberg, \& Airoldi '10]
$>$ Huge literature has developed in past two decades from TCS, ML, Stats..

Objective of this minicourse

Two high-level questions:

1. When is recovering clusters possible/impossible? (Information theoretic limit)
2. Are there fast and optimal algorithms to recover clusters
$>$ Will dive deep into a sharp phase transition for exact recovery

References

1. E. Abbe, Community Detection and Stochastic Block Models: Recent Developments. Journal of Machine Learning Research (2018)

Stochastic Block Model

Parameters.

$>$ Number of communities: $\mathrm{k} \geqslant 2$
$>$ Communities sizes: $\mathrm{p}=\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}\right)$, a probability vector with $\mathrm{p}_{\mathrm{i}}>0$
$>$ Probability matrix: Q , a $\mathrm{k} \times \mathrm{k}$ symmetric matrix
$>$ Sparsity ρ_{n}

Stochastic Block Model

Parameters.
$>$ Number of communities: $k \geqslant 2$
$>$ Communities sizes: $\mathrm{p}=\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}\right)$, a probability vector with $\mathrm{p}_{\mathrm{i}}>0$
$>$ Probability matrix: Q , a $\mathrm{k} \times \mathrm{k}$ symmetric matrix
$>$ Sparsity ρ_{n}

Generative Model. $\operatorname{SBM}\left(n, k, p, \rho_{n} Q\right)$
$>$ Generate $\sigma: \sigma(u) \stackrel{i i d}{\sim} p$ for each vertex $u \in[n]$
$>$ Generate G: Add edge $\{u, v\}$ with probability $\rho_{n} \mathrm{Q}_{\sigma(u) \sigma(v)}$ (independent)
\Rightarrow A Symmetric SBM corresponds to the case where $p_{i}=\frac{1}{k}$ and $Q_{i j}=a$ if $i=j$ and $Q_{i j}=b$ if $i \neq j$

Stochastic Block Model

Parameters.
$>$ Number of communities: $k \geqslant 2$
$>$ Communities sizes: $\mathrm{p}=\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}\right)$, a probability vector with $\mathrm{p}_{\mathrm{i}}>0$
$>$ Probability matrix: Q , a $\mathrm{k} \times \mathrm{k}$ symmetric matrix
$>$ Sparsity ρ_{n}

Generative Model. $\operatorname{SBM}\left(n, k, p, \rho_{n} Q\right)$
$>$ Generate $\sigma: \sigma(u) \stackrel{i i d}{\sim} p$ for each vertex $u \in[n]$
$>$ Generate G: Add edge $\{u, v\}$ with probability $\rho_{\mathrm{n}} \mathrm{Q}_{\sigma(u) \sigma(v)}$ (independent)
\Rightarrow A Symmetric SBM corresponds to the case where $p_{i}=\frac{1}{k}$ and $Q_{i j}=a$ if $\mathfrak{i}=j$ and $Q_{i j}=b$ if $i \neq j$

Statistical Task. Suppose $(G, \sigma) \sim \operatorname{SBM}\left(n, K, p, \rho_{n} Q\right)$. We observe $G=g$, but σ is unknown.

Find a "good" estimator \hat{o}

Different modes of recovery

Agreement: $\mathcal{A}(\sigma, \hat{\sigma}):=\max _{\pi \in S_{k}} \frac{1}{n} \sum_{\mathfrak{u}=1}^{n} \mathbb{1}\{\sigma(u)=\pi(\hat{\sigma}(u))\}$, where S_{k} is the set of permutations of $[k]:=\{1, \ldots, k\}$

Partition associated with $\sigma, \hat{\sigma}: \Sigma_{i}=\{u: \sigma(u)=i\}$, and $\Sigma=\left\{\Sigma_{1}, \ldots, \Sigma_{k}\right\}$, and $\hat{\Sigma}$ is defined similarly for \hat{o}

Different modes of recovery

Agreement: $\mathcal{A}(\sigma, \hat{\sigma}):=\max _{\pi \in S_{k}} \frac{1}{n} \sum_{u=1}^{n} \mathbb{1}\{\sigma(u)=\pi(\hat{\sigma}(u))\}$, where S_{k} is the set of permutations of $[k]:=\{1, \ldots, k\}$

Partition associated with $\sigma, \hat{\sigma}: \Sigma_{i}=\{u: \sigma(u)=i\}$, and $\Sigma=\left\{\Sigma_{1}, \ldots, \Sigma_{k}\right\}$, and $\hat{\Sigma}$ is defined similarly for \hat{o}

Exact Recovery: $\lim _{n \rightarrow \infty} \mathbb{P}(A(\sigma, \hat{\sigma})=1)=1$, or $\lim _{n \rightarrow \infty} \mathbb{P}(\Sigma=\hat{\Sigma})=1$

$$
\text { Sharp phase transition for } \rho_{n}=\frac{\log n}{n}
$$

Almost Exact Recovery: $\lim _{n \rightarrow \infty} \mathbb{P}\left(A(\sigma, \hat{\sigma}) \geqslant 1-\varepsilon_{n}\right)=1$ for some $\varepsilon_{n} \rightarrow 0$ Possibility depends on $n \rho_{n} \rightarrow \infty$ or not

Partial Recovery: Definition slightly tricky, but for symmetric SBMs...

$$
\lim _{n \rightarrow \infty} \mathbb{P}(A(\sigma, \hat{\sigma}) \geqslant \alpha) \text { for some } \alpha \in\left(\frac{1}{k}, 1\right)
$$

Sharp phase transition for $\rho_{n}=\frac{1}{n}$

Exact Recovery

Maximum A Posteriori (MAP) Estimator

$>$ Maximum A Posteriori (MAP) estimator, denoted by $\hat{\Sigma}_{\text {MAP }}$, solves the following maximization problem:

$$
\operatorname{maximize} \mathbb{P}(\hat{\Sigma}=S \mid G=g) \quad \text { over all partitions } S=\left\{S_{1}, \ldots, S_{k}\right\}
$$

If there are multiple maximizers, pick one uniformly among them

Maximum A Posteriori (MAP) Estimator

$>$ Maximum A Posteriori (MAP) estimator, denoted by $\hat{\Sigma}_{\text {MAP }}$, solves the following maximization problem:

$$
\operatorname{maximize} \mathbb{P}(\hat{\Sigma}=S \mid G=g) \quad \text { over all partitions } S=\left\{S_{1}, \ldots, S_{k}\right\}
$$

If there are multiple maximizers, pick one uniformly among them

Lemma: For any estimator $\hat{\sigma}, \mathbb{P}\left(\hat{\Sigma}_{\mathrm{MAP}} \neq \Sigma\right) \leqslant \mathbb{P}(\hat{\Sigma} \neq \Sigma)$

Maximum A Posteriori (MAP) Estimator

$>$ Maximum A Posteriori (MAP) estimator, denoted by $\hat{\Sigma}_{\text {MAP }}$, solves the following maximization problem:

$$
\operatorname{maximize} \mathbb{P}(\hat{\Sigma}=S \mid G=g) \quad \text { over all partitions } S=\left\{S_{1}, \ldots, S_{k}\right\}
$$

If there are multiple maximizers, pick one uniformly among them

Lemma: For any estimator $\hat{\sigma}, \mathbb{P}\left(\hat{\Sigma}_{\mathrm{MAP}} \neq \Sigma\right) \leqslant \mathbb{P}(\hat{\Sigma} \neq \Sigma)$
Hence, Exact recovery is possible $\Longleftrightarrow \hat{\Sigma}_{\text {MAP }}$ succeeds whp

Maximum A Posteriori (MAP) Estimator

$>$ Maximum A Posteriori (MAP) estimator, denoted by $\hat{\Sigma}_{\text {MAP }}$, solves the following maximization problem:

$$
\operatorname{maximize} \mathbb{P}(\hat{\Sigma}=S \mid G=g) \quad \text { over all partitions } S=\left\{S_{1}, \ldots, S_{k}\right\}
$$

If there are multiple maximizers, pick one uniformly among them

Lemma: For any estimator $\hat{\sigma}, \mathbb{P}\left(\hat{\Sigma}_{\mathrm{MAP}} \neq \Sigma\right) \leqslant \mathbb{P}(\hat{\Sigma} \neq \Sigma)$
Hence, Exact recovery is possible $\Longleftrightarrow \hat{\Sigma}_{\text {MAP }}$ succeeds whp

Let's try to find $\hat{\Sigma}_{\text {MAP }}$ in a simple scenario...

Maximum A Posteriori (MAP) Estimator

$>$ Maximum A Posteriori (MAP) estimator, denoted by $\hat{\Sigma}_{\text {MAP }}$, solves the following maximization problem:

$$
\operatorname{maximize} \mathbb{P}(\hat{\Sigma}=S \mid G=g) \quad \text { over all partitions } S=\left\{S_{1}, \ldots, S_{k}\right\}
$$

If there are multiple maximizers, pick one uniformly among them

Lemma: For any estimator $\hat{\sigma}, \mathbb{P}\left(\hat{\Sigma}_{\mathrm{MAP}} \neq \Sigma\right) \leqslant \mathbb{P}(\hat{\Sigma} \neq \Sigma)$
Hence, Exact recovery is possible $\Longleftrightarrow \hat{\Sigma}_{\text {MAP }}$ succeeds whp

Let's try to find $\hat{\Sigma}_{\text {MAP }}$ in a simple scenario...

1. $\hat{\Sigma}_{\text {MAP }}$ is computationally intractable
2. The distribution of $\hat{\Sigma}_{\text {MAP }}$ is difficult to analyze

Genie-based Estimator

Genie-based (hypothetical) estimator:
To estimate $\sigma(u)$

Genie-based Estimator

Genie-based (hypothetical) estimator:
To estimate $\sigma(u)$
$>$ Suppose genie tells us $\sigma_{-u}:=(\sigma(v))_{v \neq u}$

Genie-based Estimator

Genie-based (hypothetical) estimator:

To estimate $\sigma(u)$
$>$ Suppose genie tells us $\sigma_{-u}:=(\sigma(v))_{v \neq u}$
$>$ Compute MAP with genie's added info

$$
\hat{\sigma}_{\text {genie }}(\mathrm{u}):=\operatorname{argmax}_{i \in[\mathrm{k}]} \mathbb{P}\left(\sigma(\mathrm{u})=\mathfrak{i} \mid \mathrm{G}=\mathrm{g}, \sigma_{-\mathrm{u}}\right)
$$

Genie-based Estimator

Genie-based (hypothetical) estimator:

To estimate $\sigma(\mathrm{u})$
$>$ Suppose genie tells us $\sigma_{-u}:=(\sigma(v))_{v \neq u}$
$>$ Compute MAP with genie's added info

$$
\begin{aligned}
\hat{\sigma}_{\text {genie }}(\mathrm{u}) & :=\operatorname{argmax}_{\mathrm{i} \in[\mathrm{k}]} \mathbb{P}\left(\sigma(\mathrm{u})=\mathrm{i} \mid \mathrm{G}=\mathrm{g}, \sigma_{-\mathrm{u}}\right) \\
& =\operatorname{argmax}_{\mathrm{i} \in[\mathrm{k}]} \mathbb{P}\left(\mathrm{G}=\mathrm{g} \mid \sigma(\mathrm{u})=\mathrm{i}, \sigma_{-\mathrm{u}}\right) p_{\mathrm{i}}
\end{aligned}
$$

Genie-based (hypothetical) estimator:

To estimate $\sigma(\mathrm{u})$
$>$ Suppose genie tells us $\sigma_{-u}:=(\sigma(v))_{v \neq u}$
$>$ Compute MAP with genie's added info

$$
\begin{aligned}
\hat{\sigma}_{\text {genie }}(\mathrm{u}) & :=\operatorname{argmax}_{i \in[\mathrm{k}]} \mathbb{P}\left(\sigma(\mathrm{u})=\mathrm{i} \mid \mathrm{G}=\mathrm{g}, \sigma_{-\mathrm{u}}\right) \\
& =\operatorname{argmax}_{\mathrm{i} \in[\mathrm{k}]} \mathbb{P}\left(\mathrm{G}=\mathrm{g} \mid \sigma(\mathrm{u})=\mathrm{i}, \sigma_{-\mathrm{u}}\right) p_{\mathrm{i}} \\
& =\operatorname{argmax}_{\mathfrak{i} \in[\mathrm{k}]} \mathbb{P}\left(\mathrm{D}(\mathrm{u})=\mathrm{d} \mid \sigma(\mathrm{u})=\mathrm{i}, \sigma_{-\mathfrak{u}}\right) p_{i}
\end{aligned}
$$

$\Rightarrow D(u)=\left(D_{1}(u), \ldots, D_{k}(u)\right)$ is degree profile

$D_{j}(u):=\#$ edges from u to community j

Error probability for the genie-based estimator

Fact: $\frac{1}{k-1} \tilde{\mathrm{P}}_{e} \leqslant \mathbb{P}\left(\hat{\sigma}_{\text {genie }}(\mathfrak{u}) \neq \sigma(\mathfrak{u}) \mid \sigma_{-u}\right) \leqslant \tilde{\mathrm{P}}_{e}$, where

$$
\tilde{P}_{e}:=\sum_{i<j} \sum_{d \in \mathbb{Z}_{+}^{k}} \min \left\{\mathbb{P}\left(D(\mathfrak{u})=d \mid \sigma(\mathfrak{u})=\mathfrak{i}, \sigma_{-\mathfrak{u}}\right) \mathfrak{p}_{\mathfrak{i}}, \mathbb{P}\left(D(\mathfrak{u})=\mathrm{d} \mid \sigma(\mathfrak{u})=\mathfrak{j}, \sigma_{-\mathfrak{u}}\right) \mathfrak{p}_{\mathfrak{j}}\right\}
$$

Error probability for the genie-based estimator

Fact: $\frac{1}{k-1} \tilde{\mathrm{P}}_{\mathrm{e}} \leqslant \mathbb{P}\left(\hat{\sigma}_{\text {genie }}(u) \neq \sigma(u) \mid \sigma_{-u}\right) \leqslant \tilde{\mathrm{P}}_{\mathrm{e}}$, where
$\tilde{P}_{e}:=\sum_{i<j} \sum_{d \in \mathbb{Z}_{+}^{k}} \min \left\{\mathbb{P}\left(D(u)=d \mid \sigma(u)=i, \sigma_{-u}\right) p_{i}, \mathbb{P}\left(D(u)=d \mid \sigma(u)=j, \sigma_{-u}\right) p_{j}\right\}$

Lemma 1 [Abbe, Sandon '15]
If $(G, \sigma) \sim \operatorname{SBM}\left(n, k, p, \rho_{n} Q\right)$ and $\rho_{n}=\frac{\log n}{n}$, then w.p. $\geqslant 1-e^{-\Omega\left(n^{c}\right)}$

$$
\tilde{P}_{e}=n^{-I(p, Q)+O\left(\frac{\log \log n}{\log n}\right)}
$$

where

$$
\begin{aligned}
I(p, Q) & =\min _{i<j} C H\left(\left(p_{l} Q_{i l}\right)_{l \in[k]} \|\left(p_{l} Q_{j l}\right)_{l \in[k]}\right) \\
C H(\mu \| v) & =\max _{t \in[0,1]} \sum_{x} v(x) f_{t}\left(\frac{\mu(x)}{v(x)}\right), f_{t}(y)=1-t+t y-y^{t}
\end{aligned}
$$

Impossibility

Theorem 1
Suppose that $(G, \sigma) \sim \operatorname{SBM}\left(n, k, p, \rho_{n} Q\right)$ and $\rho_{n}=\frac{\log n}{n}$. If $I(p, Q)<1$, then for any estimator $\hat{\sigma}$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}(\hat{o} \neq \sigma)=1 \quad \text { (Exact recovery impossible) }
$$

Impossibility

Theorem 1

Suppose that $(G, \sigma) \sim \operatorname{SBM}\left(n, k, p, \rho_{n} Q\right)$ and $\rho_{n}=\frac{\log n}{n}$. If $I(p, Q)<1$, then for any estimator $\hat{\sigma}$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}(\hat{o} \neq \sigma)=1 \quad \text { (Exact recovery impossible) }
$$

Example: Consider the symmetric SBM, i.e., $\mathrm{Q}_{\mathrm{ij}}=\mathrm{a}$ if $\mathrm{i}=\mathrm{j}$ and $\mathrm{Q}_{\mathrm{ij}}=\mathrm{b}$ for $i \neq j$, and $p_{i}=\frac{1}{k}$ and $\rho_{n}=\frac{\log n}{n}$. Then

$$
\frac{(\sqrt{a}-\sqrt{b})^{2}}{k} \Longrightarrow \quad \text { Exact recovery impossible }
$$

Finding good estimators

Can we find an estimator that is efficiently computable and achieves exact recovery whenever $\mathrm{I}(\mathrm{p}, \mathrm{Q})>1$?

Finding good estimators

Can we find an estimator that is efficiently computable and achieves exact recovery whenever $\mathrm{I}(\mathrm{p}, \mathrm{Q})>1$?

Idea (Two-step estimator):

\Rightarrow Step 1: Good Guess. Take a good enough initial estimator, i.e., take $\hat{\sigma}_{1}$ that achieves almost exact recovery
\Rightarrow Step 2: Clean up. Compute $\hat{\sigma}_{2}(u):=\hat{\sigma}_{\text {genie }}\left(u, G, \hat{\sigma}_{1,-u}\right)$ for all u

Finding good estimators

Can we find an estimator that is efficiently computable and achieves exact recovery whenever $\mathrm{I}(\mathrm{p}, \mathrm{Q})>1$?

Idea (Two-step estimator):

\Rightarrow Step 1: Good Guess. Take a good enough initial estimator, i.e., take $\hat{\sigma}_{1}$ that achieves almost exact recovery
\Rightarrow Step 2: Clean up. Compute $\hat{\sigma}_{2}(u):=\hat{\sigma}_{\text {genie }}\left(u, G, \hat{\sigma}_{1,-u}\right)$ for all u

Advantage: $\hat{\sigma}_{2}$ is efficiently computable if $\hat{\sigma}_{1}$ is so

Challenges:

1. How to find a good $\hat{\sigma}_{1}$?
2. $\hat{\sigma}_{1}$ depends on G, which makes $\hat{\sigma}_{\text {genie }}\left(u, G, \hat{\sigma}_{1,-u}\right)$ difficult to analyze.

Graph-splitting

$>\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$ is constructed from G as follows:

1. Include each edge of G in G_{1} w.p. γ_{n} (independently)
2. $\mathrm{G}_{2}=\mathrm{G} \backslash \mathrm{G}_{1}$ contains rest of the edges

Graph-splitting

$>\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$ is constructed from G as follows:

1. Include each edge of G in G_{1} w.p. γ_{n} (independently)
2. $\mathrm{G}_{2}=\mathrm{G} \backslash \mathrm{G}_{1}$ contains rest of the edges

Modified Two-step estimator: Compute $\hat{\sigma}_{\text {genie }}\left(u, G_{2}, \hat{\sigma}_{1,-u}\left(G_{1}\right)\right)$ for all u

Graph-splitting

$>\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$ is constructed from G as follows:

1. Include each edge of G in G_{1} w.p. γ_{n} (independently)
2. $\mathrm{G}_{2}=\mathrm{G} \backslash \mathrm{G}_{1}$ contains rest of the edges

Modified Two-step estimator: Compute $\hat{\sigma}_{\text {genie }}\left(u, G_{2}, \hat{\sigma}_{1,-u}\left(G_{1}\right)\right)$ for all u

Lemma 2

Suppose that $(G, \sigma) \sim \operatorname{SBM}\left(n, k, p, \rho_{n} Q\right)$ and $\rho_{n}=\frac{\log n}{n}$, and take graph-splitting $\left(G_{1}, G_{2}\right)$ as above with $\frac{1}{\log n} \ll \gamma_{n} \ll \frac{\log \log n}{\log n}$.
$>$ Suppose $\hat{\sigma}_{1}=\hat{\sigma}_{1}\left(G_{1}\right)$ achieve almost exact recovery
$>$ Take $\tilde{\mathrm{G}}_{2} \sim \operatorname{SBM}\left(\mathrm{n}, \mathrm{k}, \mathrm{p}, \frac{\left(1-\gamma_{n}\right) \log n}{n} \mathrm{Q}\right)$
Then for any u and $d \in \mathbb{Z}_{+}^{k}$, with high probability,

$$
\begin{aligned}
& \mathbb{P}\left(D\left(u ; \hat{\sigma}_{1}, G_{2}\right)=d \mid G_{1}, \hat{\sigma}_{1,-u}, \sigma(u)=\mathfrak{i}\right) \\
& \leqslant(1+o(1)) \mathbb{P}\left(D\left(u ; \hat{\sigma}_{1}, \tilde{G}_{2}\right)=d \mid \hat{\sigma}_{1,-u}, \sigma(u)=\mathfrak{i}\right)+n^{-\omega(1)}
\end{aligned}
$$

Achievability

Theorem 2

Suppose that $(G, \sigma) \sim \operatorname{SBM}\left(n, k, p, \rho_{n} Q\right)$ and $\rho_{n}=\frac{\log n}{n}$, and take graph-splitting $\left(G_{1}, G_{2}\right)$ as above with $\frac{1}{\log n} \ll \gamma_{n} \ll \frac{\log \log n}{\log n}$.
$>$ Suppose $\hat{\sigma}_{1}=\hat{\sigma}_{1}\left(\mathrm{G}_{1}\right)$ achieve almost exact recovery
Then,

$$
\mathrm{I}(\mathrm{p}, \mathrm{Q})>1 \Longrightarrow \hat{\sigma}_{\text {genie }}\left(\mathrm{G}_{2}, \hat{\sigma}_{1,-\mathrm{u}}\left(\mathrm{G}_{1}\right)\right) \text { achieves exact recovery }
$$

\rightarrow Exact recovery is possible up to the information theoretic threshold if almost exact recovery is possible for $n \rho_{n} \rightarrow \infty$

How to produce a good initial estimator?

Approach 1: Sphere comparison

$>$ Choose E by sampling from all edges with probability c (fixed)
$>$ Let $\mathrm{N}_{\mathrm{r}, \mathrm{r}^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right)$ be the number of pairs of vertices $\left(v_{1}, v_{2}\right)$ such that
$v_{1} \in \mathrm{~N}_{\mathrm{r}}(v, \mathrm{G} \backslash \mathrm{E}), v_{2} \in \mathrm{~N}_{\mathrm{r}}\left(v^{\prime}, \mathrm{G} \backslash \mathrm{E}\right)$, and $\left\{v_{1}, v_{2}\right\} \in \mathrm{E}$

Approach 1: Sphere comparison

$>$ Choose E by sampling from all edges with probability c (fixed)
$>$ Let $\mathrm{N}_{\mathrm{r}, \mathrm{r}^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right)$ be the number of pairs of vertices $\left(v_{1}, v_{2}\right)$ such that $v_{1} \in \mathrm{~N}_{\mathrm{r}}(v, \mathrm{G} \backslash \mathrm{E}), v_{2} \in \mathrm{~N}_{\mathrm{r}}\left(v^{\prime}, \mathrm{G} \backslash \mathrm{E}\right)$, and $\left\{v_{1}, v_{2}\right\} \in \mathrm{E}$

$>$ Idea of [Abbe, Sandon '15] is to use $\mathrm{N}_{\mathrm{r}, \mathrm{r}^{\prime}}\left(\nu, \nu^{\prime}, \mathrm{E}\right)$ to come up with tests for deciding whether v, v^{\prime} are in same community or not. For example, for $k=2$, compute

$$
\mathrm{I}_{\mathrm{r}, \mathrm{r}^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right)=\mathrm{N}_{\mathrm{r}+2, r^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right) \times \mathrm{N}_{\mathrm{r}, \mathrm{r}^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right)-\mathrm{N}_{\mathrm{r}+1, \mathrm{r}^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right)^{2}
$$

Result [Abbe, Sandon '15]. Sphere comparison achieves almost exact recovery for a suitable choice of r, c whenever $n \rho_{n} \rightarrow \infty, Q$ is irreducible, and no two rows of Q are identical

Day 2

Recap

$>$ Interested in exact recovery of σ when $(G, \sigma) \sim \operatorname{SBM}\left(n, k, p, \rho_{n} Q\right)$

Recap

$>$ Interested in exact recovery of σ when $(G, \sigma) \sim \operatorname{SBM}\left(n, k, p, \rho_{n} Q\right)$
> Used Genie-based (hypothetical) estimator

$$
\begin{aligned}
\hat{\sigma}_{\text {genie }}(\mathfrak{u}) & :=\operatorname{argmax}_{i \in[k]} \mathbb{P}\left(\sigma(u)=\mathfrak{i} \mid G=g, \sigma_{-u}\right) p_{i} \\
& =\operatorname{argmax}_{i \in[k]} \mathbb{P}\left(D(u)=d \mid \sigma(u)=i, \sigma_{-u}\right) p_{i}
\end{aligned}
$$

Recap

$>$ Interested in exact recovery of σ when $(G, \sigma) \sim \operatorname{SBM}\left(n, k, p, \rho_{n} Q\right)$
$>$ Used Genie-based (hypothetical) estimator

$$
\begin{aligned}
\hat{\sigma}_{\text {genie }}(\mathfrak{u}) & :=\operatorname{argmax}_{i \in[k]} \mathbb{P}\left(\sigma(u)=\mathfrak{i} \mid \mathrm{G}=\mathrm{g}, \sigma_{-\mathrm{u}}\right) p_{\mathrm{i}} \\
& =\operatorname{argmax}_{i \in[k]} \mathbb{P}\left(\mathrm{D}(\mathrm{u})=\mathrm{d} \mid \sigma(\mathrm{u})=\mathrm{i}, \sigma_{-\mathrm{u}}\right) p_{\mathrm{i}}
\end{aligned}
$$

$>\mathbb{P}\left(\hat{\sigma}_{\text {genie }}(\mathrm{u}) \neq \sigma(\mathrm{u})\right)=\mathrm{n}^{-\mathrm{I}(\mathrm{p}, \mathrm{Q})+\mathrm{o}(1)}$

$$
\mathrm{I}(\mathrm{p}, \mathrm{Q})<1 \Longrightarrow \text { Impossibility, } \mathrm{I}(\mathrm{p}, \mathrm{Q})>1 \Longrightarrow \text { Possible? }
$$

Recap

$>$ Interested in exact recovery of σ when $(G, \sigma) \sim \operatorname{SBM}\left(n, k, p, \rho_{n} Q\right)$
$>$ Used Genie-based (hypothetical) estimator

$$
\begin{aligned}
\hat{\sigma}_{\text {genie }}(\mathfrak{u}) & :=\operatorname{argmax}_{i \in[k]} \mathbb{P}\left(\sigma(u)=\mathfrak{i} \mid \mathrm{G}=\mathrm{g}, \sigma_{-\mathrm{u}}\right) p_{\mathrm{i}} \\
& =\operatorname{argmax}_{i \in[k]} \mathbb{P}\left(\mathrm{D}(\mathrm{u})=\mathrm{d} \mid \sigma(\mathrm{u})=\mathfrak{i}, \sigma_{-\mathrm{u}}\right) p_{\mathrm{i}}
\end{aligned}
$$

$>\mathbb{P}\left(\hat{\sigma}_{\text {genie }}(\mathrm{u}) \neq \sigma(\mathrm{u})\right)=\mathrm{n}^{-\mathrm{I}(\mathrm{p}, \mathrm{Q})+\mathrm{o}(1)}$

$$
\mathrm{I}(\mathrm{p}, \mathrm{Q})<1 \Longrightarrow \text { Impossibility, } \mathrm{I}(\mathrm{p}, \mathrm{Q})>1 \Longrightarrow \text { Possible? }
$$

$>$ Graph-splitting: Compute $\hat{\sigma}_{2}(u)=\hat{\sigma}_{\text {genie }}\left(u ; G_{2}, \hat{\sigma}_{-u}\left(G_{1}\right)\right)$ for all u $\mathrm{I}(\mathrm{p}, \mathrm{Q})>1$, and $\hat{\sigma}_{1}$ achieves almost exact recovery for $\mathrm{n} \rho_{\mathrm{n}} \rightarrow \infty$ $\Longrightarrow \hat{\sigma}_{2}$ achieves exact recovery

How to produce a good initial estimator?

Approach 1: Sphere comparison. [Abbe, Sandon '15] use $\mathrm{N}_{\mathrm{r}, \mathrm{r}^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right)$ to come up with tests for deciding whether v, v^{\prime} are in same community or not. For example, for $k=2$, compute

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{r}, \mathrm{r}^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right)=\mathrm{N}_{\mathrm{r}+2, r^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right) \times \mathrm{N}_{\mathrm{r}, \mathrm{r}^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right)-\mathrm{N}_{\mathrm{r}+1, \mathrm{r}^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right)^{2} \\
& \approx \frac{\mathrm{c}^{2}(1-\mathrm{c})^{2 r+2 r^{\prime}+2}}{n^{2}}\left(\mathrm{~d}-\frac{\mathrm{a}-\mathrm{b}}{2}\right)^{2} \mathrm{~d}^{\mathrm{r}+\mathrm{r}^{\prime}+1}\left(\frac{\mathrm{a}-\mathrm{b}}{2}\right)^{r+r^{\prime}+1}(2 \mathbb{1}\{\sigma(u)=\sigma(v)\}-1)
\end{aligned}
$$

[Abbe, Sandon '15] proved that such sphere comparison achieves almost exact recovery for a suitable choice of r, c whenever $n \rho_{n} \rightarrow \infty, Q$ is irreducible, and no two rows of Q are identical

How to produce a good initial estimator?

Approach 1: Sphere comparison. [Abbe, Sandon ${ }^{\prime} 15$] use $\mathrm{N}_{\mathrm{r}, \mathrm{r}^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right)$ to come up with tests for deciding whether v, v^{\prime} are in same community or not. For example, for $k=2$, compute

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{r}, \mathrm{r}^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right)=\mathrm{N}_{\mathrm{r}+2, r^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right) \times \mathrm{N}_{\mathrm{r}, \mathrm{r}^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right)-\mathrm{N}_{\mathrm{r}+1, \mathrm{r}^{\prime}}\left(v, v^{\prime}, \mathrm{E}\right)^{2} \\
& \approx \frac{\mathrm{c}^{2}(1-\mathrm{c})^{2 r+2 r^{\prime}+2}}{\mathrm{n}^{2}}\left(\mathrm{~d}-\frac{\mathrm{a}-\mathrm{b}}{2}\right)^{2} \mathrm{~d}^{r+r^{\prime}+1}\left(\frac{a-b}{2}\right)^{r+r^{\prime}+1}(2 \mathbb{1}\{\sigma(u)=\sigma(v)\}-1)
\end{aligned}
$$

[Abbe, Sandon '15] proved that such sphere comparison achieves almost exact recovery for a suitable choice of r, c whenever $n \rho_{n} \rightarrow \infty, Q$ is irreducible, and no two rows of Q are identical

Approach 2: Spectral Algorithms. Today's focus
\Rightarrow Almost recovery when $n \rho_{n} \rightarrow \infty$
\Rightarrow Exact recovery up to information theoretic threshold

Intuition: Spectral algorithm

Let A be the the adjacency matrix of G and $A^{\star}=\mathbb{E}[A \mid \sigma]$

$$
A=\underbrace{A^{\star}}_{\text {signal }}+\underbrace{\left(A-A^{\star}\right)}_{\text {noise }}
$$

$>\left(\lambda_{i}, \phi_{i}\right)_{i=1}^{k}$ and $\left(\lambda_{i}^{\star}, \phi_{i}^{\star}\right)_{i=1}^{k}$ be the top k eigenpairs of A, A^{\star} resp.

Intuition: Spectral algorithm

Let A be the the adjacency matrix of G and $A^{\star}=\mathbb{E}[A \mid \sigma]$

$$
A=\underbrace{A^{\star}}_{\text {signal }}+\underbrace{\left(A-A^{\star}\right)}_{\text {noise }}
$$

$>\left(\lambda_{i}, \phi_{i}\right)_{i=1}^{k}$ and $\left(\lambda_{i}^{\star}, \phi_{i}^{\star}\right)_{i=1}^{k}$ be the top k eigenpairs of A, A^{\star} resp.

Fact: If $\Phi^{\star}=\left(\phi_{1}^{\star}, \ldots, \phi_{\mathrm{k}}^{\star}\right)$ be $\mathfrak{n} \times \mathrm{k}$ matrix, then

$$
\left(\Phi^{\star}\right)_{\mathbf{u}, \cdot} \begin{cases}=\left(\Phi^{\star}\right)_{v,} & \text { if } \sigma(\mathrm{u})=\sigma(v) \\ \neq\left(\Phi^{\star}\right)_{v,} & \text { if } \sigma(\mathfrak{u}) \neq \sigma(v)\end{cases}
$$

Intuition: Spectral algorithm

Let A be the the adjacency matrix of G and $A^{\star}=\mathbb{E}[A \mid \sigma]$

$$
A=\underbrace{A^{\star}}_{\text {signal }}+\underbrace{\left(A-A^{\star}\right)}_{\text {noise }}
$$

$>\left(\lambda_{i}, \phi_{i}\right)_{i=1}^{k}$ and $\left(\lambda_{i}^{\star}, \phi_{i}^{\star}\right)_{i=1}^{k}$ be the top k eigenpairs of A, A^{\star} resp.

Fact: If $\Phi^{\star}=\left(\phi_{1}^{\star}, \ldots, \phi_{\mathrm{k}}^{\star}\right)$ be $\mathrm{n} \times \mathrm{k}$ matrix, then

$$
\left(\Phi^{\star}\right)_{u, \cdot} \begin{cases}=\left(\Phi^{\star}\right)_{v, \cdot} & \text { if } \sigma(u)=\sigma(v) \\ \neq\left(\Phi^{\star}\right)_{v, \cdot} & \text { if } \sigma(u) \neq \sigma(v)\end{cases}
$$

If $\left\|A-A^{\star}\right\|$ small $\Longrightarrow \Phi \approx \Phi^{\star}$

Matrix perturbation theory

Let $\left(\lambda_{i}(X), \phi_{i}(X)\right)$ be the i-th top eigenpair of X
Theorem [Davis, Kahan '70]
Suppose X, X_{0} are symmetric matrices with X_{0} has k distinct non-zero eigenvalues. Then

$$
\begin{aligned}
& \min _{s \in\{ \pm 1\}}\left\|\phi_{i}(\mathrm{X})-s \phi_{i}\left(\mathrm{X}_{0}\right)\right\|_{2} \leqslant \frac{c\left\|X-X_{0}\right\|_{2 \rightarrow 2}}{\min \left\{\left\{\lambda_{i-1}\left(X_{0}\right)-\lambda_{i}\left(X_{0}\right), \lambda_{i}\left(X_{0}\right)-\lambda_{i+1}\left(X_{0}\right)\right\}\right.} \\
& \text { with } \lambda_{0}\left(X_{0}\right)=+\infty, \lambda_{k}\left(X_{0}\right)=-\infty, \text { for some absolute constant } \mathrm{c}>0
\end{aligned}
$$

Spectral algorithm for almost exact recovery

Is $\left\|\mathrm{A}-\mathrm{A}^{\star}\right\|_{2 \rightarrow 2} \ll \mathrm{n} \rho_{\mathrm{n}}$ whp whenever $\mathrm{n} \rho_{\mathrm{n}} \rightarrow \infty$?

Spectral algorithm for almost exact recovery

Is $\left\|\mathcal{A}-\mathrm{A}^{\star}\right\|_{2 \rightarrow 2} \ll n \rho_{\mathrm{n}}$ whp whenever $n \rho_{\mathrm{n}} \rightarrow \infty$?

- NO, instead we can look at the trimmed matrix

Spectral algorithm for almost exact recovery

Is $\left\|\mathrm{A}-\mathrm{A}^{\star}\right\|_{2 \rightarrow 2} \ll n \rho_{\mathrm{n}}$ whp whenever $n \rho_{n} \rightarrow \infty$?

- NO, instead we can look at the trimmed matrix

Spectral clustering: Compute $\hat{\sigma}_{1}$
(S1) Construct \tilde{A} as

$$
\tilde{\mathcal{A}}_{i j}= \begin{cases}A_{i j} & \text { if } d_{i} \text { or } d_{j}<2\|Q\|_{\infty} n \rho_{n} \\ 0 & \text { otherwise }\end{cases}
$$

(S2) Construct $\tilde{\Phi}$ with top k eigenvectors of \tilde{A}
(S3) Apply k-means clustering on the rows of $\tilde{\Phi}$

Theorem

$\hat{\sigma}_{1}$ achieves almost exact recovery whenever $n \rho_{n} \rightarrow \infty$
$\Longrightarrow \hat{\sigma}_{2}=\hat{\sigma}_{\text {genie }}\left(G_{1}, \hat{\sigma}_{1}\right)$ achieves exact recovery whenever $I(p, Q)>1$

We have shown
Spectral clustering + clean-up achieves exact recovery for $I(p, Q)>1$

Do direct spectral algorithms achieve this optimal recovery?
Need an entrywise perturbation bound...

Entrywise perturbation bound

Assumptions.

(A1) Well-behaved mean matrix. A^{\star} has k distinct, non-zero eigenvalues $\lambda_{1}^{\star}>\cdots>\lambda_{\mathrm{k}}^{\star}$ with $\lambda_{\mathrm{k}}^{\star}=\Theta\left(\lambda_{1}^{\star}\right)$. Moreover, for some $\gamma \rightarrow 0$ and $\Delta=\min _{i}\left\{\lambda_{i-1}^{\star}-\lambda_{i}^{\star}\right\}$ with $\lambda_{0}^{\star}=\infty$

$$
\left\|A^{\star}\right\|_{2 \rightarrow \infty} \leqslant \gamma \Delta
$$

(A2) Row-wise and column-wise independence. For any $m \in[n]$, $\left(A_{i j}: i=m\right.$ or $\left.j=m\right)$ is independent of $\left(A_{i j}: i \neq m\right.$ or $\left.j \neq m\right)$
(A3) Spectral norm concentration. $\left\|A-A^{\star}\right\|_{2 \rightarrow 2} \leqslant \gamma \Delta$ whp
(A4) Row concentration. $\exists \psi: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}$(continuous, non-decreasing, possibly depending on n) such that $\psi(0)=0, \psi(1)=O(1), \frac{\psi(x)}{x}$ is non-increasing and for any $m \in[n], w \in \mathbb{R}^{n}$

$$
\left|\left\langle(A-A)_{m}, w\right\rangle\right| \leqslant \Delta\|w\|_{\infty} \psi\left(\frac{\|w\|_{2}}{\sqrt{n}\|w\|_{\infty}}\right) \quad \text { w.p. } \geqslant 1-o\left(n^{-1}\right)
$$

Entrywise perturbation bound

Assumptions.

(A1) Well-behaved mean matrix. A^{\star} has k distinct, non-zero eigenvalues $\lambda_{1}^{\star}>\cdots>\lambda_{k}^{\star}$ with $\lambda_{k}^{\star}=\Theta\left(\lambda_{1}^{\star}\right)$. Moreover, for some $\gamma \rightarrow 0$ and $\Delta=\min _{i}\left\{\lambda_{i-1}^{\star}-\lambda_{i}^{\star}\right\}$ with $\lambda_{0}^{\star}=\infty$

$$
\left\|A^{\star}\right\|_{2 \rightarrow \infty} \leqslant \gamma \Delta
$$

(A2) Row-wise and column-wise independence. For any $m \in[n]$, $\left(A_{i j}: i=m\right.$ or $\left.j=m\right)$ is independent of $\left(A_{i j}: i \neq m\right.$ or $\left.j \neq m\right)$
(A3) Spectral norm concentration. $\left\|A-A^{\star}\right\|_{2 \rightarrow 2} \leqslant \gamma \Delta$ whp
(A4) Row concentration. $\exists \psi: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}$(continuous, non-decreasing, possibly depending on n) such that $\psi(0)=0, \psi(1)=O(1), \frac{\psi(x)}{x}$ is non-increasing and for any $m \in[n], w \in \mathbb{R}^{n}$

$$
\left|\left\langle(A-A)_{m}, w\right\rangle\right| \leqslant \Delta\|w\|_{\infty} \psi\left(\frac{\|w\|_{2}}{\sqrt{n}\|w\|_{\infty}}\right) \quad \text { w.p. } \geqslant 1-o\left(n^{-1}\right)
$$

Theorem [Abbe, Fan, Wang, Zhong '20]
$\min _{s \in\{ \pm 1\}}\left\|\phi_{i}-s \frac{A \phi_{i}^{\star}}{\lambda_{i}^{\star}}\right\|_{\infty}=\mathrm{o}\left(\left\|\phi_{i}^{\star}\right\|_{\infty}\right)$ whp for all $i \in[k]$

