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Clustering/Community Detection Problem

➢ Communities are densely connected parts of a network

[Abbe ’18]

➢ Divide the graph into communities from unlabelled graph. This is an
unsupervised learning task



4

Applications

Community detection is a central problem in machine learning and data mining...

Numerous applications in ...

➜ Recommender system [Wu, Xu, Srikant, Massoulié, Lelarge, & Hajek ’15]

➜ Webpage sorting [Kumar, Raghavan, Rajagopalan, & Tomkins ’99]

➜ Functionalilty of Human Brain [Martinet, Kramer, Viles, Perkins, Spencer,
Chu, Cash & Kolaczyk ’20]

➜ Social networks [Goldenberg, Zheng, Fienberg, & Airoldi ’10]

➢ Huge literature has developed in past two decades from TCS, ML, Stats..
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Objective of this minicourse

Two high-level questions:

1. When is recovering clusters possible/impossible? (Information
theoretic limit)

2. Are there fast and optimal algorithms to recover clusters

➢ Will dive deep into a sharp phase transition for exact recovery

References

1. E. Abbe, Community Detection and Stochastic Block Models: Recent
Developments. Journal of Machine Learning Research (2018)
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Stochastic Block Model

Parameters.
➢ Number of communities: k ⩾ 2

➢ Communities sizes: p = (p1, . . . ,pk), a probability vector with pi > 0

➢ Probability matrix: Q, a k× k symmetric matrix

➢ Sparsity ρn

Generative Model. SBM(n,k,p, ρnQ)

➢ Generate σ: σ(u)
iid
∼ p for each vertex u ∈ [n]

➢ Generate G: Add edge {u, v} with probability ρnQσ(u)σ(v) (independent)

➡ A Symmetric SBM corresponds to the case where pi = 1
k and Qij = a if

i = j and Qij = b if i ̸= j

Statistical Task. Suppose (G,σ) ∼ SBM(n,K,p, ρnQ). We observe G = g, but
σ is unknown.

Find a “good” estimator σ̂
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Different modes of recovery

Agreement: A(σ, σ̂) := maxπ∈Sk

1
n

∑n
u=1 1{σ(u) = π(σ̂(u))}, where Sk is

the set of permutations of [k] := {1, . . . ,k}

Partition associated with σ, σ̂: Σi = {u : σ(u) = i}, and Σ = {Σ1, . . . ,Σk}, and
Σ̂ is defined similarly for σ̂

Exact Recovery: limn→∞P(A(σ, σ̂) = 1) = 1, or limn→∞P(Σ = Σ̂) = 1

Sharp phase transition for ρn =
logn
n

Almost Exact Recovery: limn→∞P(A(σ, σ̂) ⩾ 1 − εn) = 1 for some εn → 0

Possibility depends on nρn → ∞ or not

Partial Recovery: Definition slightly tricky, but for symmetric SBMs...

lim
n→∞P(A(σ, σ̂) ⩾ α) for some α ∈

( 1
k

, 1
)

Sharp phase transition for ρn = 1
n
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Exact Recovery
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Maximum A Posteriori (MAP) Estimator

➢ Maximum A Posteriori (MAP) estimator, denoted by Σ̂MAP, solves the
following maximization problem:

maximize P(Σ̂ = S | G = g) over all partitions S = {S1, . . . ,Sk}

If there are multiple maximizers, pick one uniformly among them

Lemma: For any estimator σ̂, P(Σ̂MAP ̸= Σ) ⩽ P(Σ̂ ̸= Σ)

Hence, Exact recovery is possible ⇐⇒ Σ̂MAP succeeds whp

Let’s try to find Σ̂MAP in a simple scenario...

1. Σ̂MAP is computationally intractable

2. The distribution of Σ̂MAP is difficult to analyze
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Genie-based Estimator

Genie-based (hypothetical) estimator:

To estimate σ(u)

➢ Suppose genie tells us σ−u := (σ(v))v ̸=u

➢ Compute MAP with genie’s added info

σ̂genie(u) := argmaxi∈[k] P(σ(u) = i | G = g,σ−u)

= argmaxi∈[k] P(G = g | σ(u) = i,σ−u)pi

= argmaxi∈[k] P(D(u) = d | σ(u) = i,σ−u)pi

➡ D(u) = (D1(u), . . . ,Dk(u)) is degree profile
Dj(u):= # edges from u to community j
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Error probability for the genie-based estimator

Fact: 1
k−1 P̃e ⩽ P(σ̂genie(u) ̸= σ(u) | σ−u) ⩽ P̃e, where

P̃e :=
∑
i<j

∑
d∈Zk

+

min{P(D(u) = d | σ(u) = i,σ−u)pi,P(D(u) = d | σ(u) = j,σ−u)pj}

Lemma 1 [Abbe, Sandon ’15]

If (G,σ) ∼ SBM(n,k,p, ρnQ) and ρn =
logn
n , then w.p. ⩾ 1 − e−Ω(nc)

P̃e = n
−I(p,Q)+O(

log logn

logn
)

where

I(p,Q) = min
i<j

CH((plQil)l∈[k] ∥ (plQjl)l∈[k])

CH(µ ∥ ν) = max
t∈[0,1]

∑
x

ν(x)ft

(µ(x)
ν(x)

)
, ft(y) = 1 − t+ ty− yt
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Impossibility

Theorem 1

Suppose that (G,σ) ∼ SBM(n,k,p, ρnQ) and ρn =
logn
n . If I(p,Q) < 1, then

for any estimator σ̂,

lim
n→∞P(σ̂ ̸= σ) = 1 (Exact recovery impossible)

Example: Consider the symmetric SBM, i.e., Qij = a if i = j and Qij = b for

i ̸= j, and pi = 1
k and ρn =

logn
n . Then

(
√
a−

√
b)2

k
=⇒ Exact recovery impossible
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Finding good estimators

Can we find an estimator that is efficiently computable and achieves exact recovery
whenever I(p,Q) > 1?

Idea (Two-step estimator):

➡ Step 1: Good Guess. Take a good enough initial estimator, i.e., take σ̂1
that achieves almost exact recovery

➡ Step 2: Clean up. Compute σ̂2(u) := σ̂genie(u,G, σ̂1,−u) for all u

Advantage: σ̂2 is efficiently computable if σ̂1 is so

Challenges:

1. How to find a good σ̂1?

2. σ̂1 depends on G, which makes σ̂genie(u,G, σ̂1,−u) difficult to analyze.
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Graph-splitting

➢ (G1,G2) is constructed from G as follows:

1. Include each edge of G in G1 w.p. γn (independently)

2. G2 = G \G1 contains rest of the edges

Modified Two-step estimator: Compute σ̂genie(u,G2, σ̂1,−u(G1)) for all u

Lemma 2

Suppose that (G,σ) ∼ SBM(n,k,p, ρnQ) and ρn =
logn
n , and take

graph-splitting (G1,G2) as above with 1
logn ≪ γn ≪ log logn

logn .

➢ Suppose σ̂1 = σ̂1(G1) achieve almost exact recovery

➢ Take G̃2 ∼ SBM(n,k,p, (1−γn) logn
n Q)

Then for any u and d ∈ Zk+, with high probability,

P(D(u; σ̂1,G2) = d | G1, σ̂1,−u,σ(u) = i)

⩽ (1 + o(1))P(D(u; σ̂1, G̃2) = d | σ̂1,−u,σ(u) = i) +n−ω(1)
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Achievability

Theorem 2

Suppose that (G,σ) ∼ SBM(n,k,p, ρnQ) and ρn =
logn
n , and take

graph-splitting (G1,G2) as above with 1
logn ≪ γn ≪ log logn

logn .

➢ Suppose σ̂1 = σ̂1(G1) achieve almost exact recovery

Then,

I(p,Q) > 1 =⇒ σ̂genie(G2, σ̂1,−u(G1)) achieves exact recovery

➢ Exact recovery is possible up to the information theoretic threshold if almost
exact recovery is possible for nρn → ∞
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How to produce a good initial estimator?



17

Approach 1: Sphere comparison

➢ Choose E by sampling from all edges with probability c (fixed)

➢ Let Nr,r′(v, v ′,E) be the number of pairs of vertices (v1, v2) such that
v1 ∈ Nr(v,G \ E), v2 ∈ Nr(v ′,G \ E), and {v1, v2} ∈ E

➢ Idea of [Abbe, Sandon ’15] is to use Nr,r′(v, v ′,E) to come up with tests for
deciding whether v, v ′ are in same community or not. For example, for
k = 2, compute

Ir,r′(v, v ′,E) = Nr+2,r′(v, v ′,E)×Nr,r′(v, v ′,E) −Nr+1,r′(v, v ′,E)2

Result [Abbe, Sandon ’15]. Sphere comparison achieves almost exact recovery
for a suitable choice of r, c whenever nρn → ∞, Q is irreducible, and no two
rows of Q are identical



17

Approach 1: Sphere comparison

➢ Choose E by sampling from all edges with probability c (fixed)

➢ Let Nr,r′(v, v ′,E) be the number of pairs of vertices (v1, v2) such that
v1 ∈ Nr(v,G \ E), v2 ∈ Nr(v ′,G \ E), and {v1, v2} ∈ E

➢ Idea of [Abbe, Sandon ’15] is to use Nr,r′(v, v ′,E) to come up with tests for
deciding whether v, v ′ are in same community or not. For example, for
k = 2, compute

Ir,r′(v, v ′,E) = Nr+2,r′(v, v ′,E)×Nr,r′(v, v ′,E) −Nr+1,r′(v, v ′,E)2

Result [Abbe, Sandon ’15]. Sphere comparison achieves almost exact recovery
for a suitable choice of r, c whenever nρn → ∞, Q is irreducible, and no two
rows of Q are identical



18

Day 2
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Recap

➢ Interested in exact recovery of σ when (G,σ) ∼ SBM(n,k,p, ρnQ)

➢ Used Genie-based (hypothetical) estimator

σ̂genie(u) := argmaxi∈[k] P(σ(u) = i | G = g,σ−u)pi

= argmaxi∈[k] P(D(u) = d | σ(u) = i,σ−u)pi

➢ P(σ̂genie(u) ̸= σ(u)) = n−I(p,Q)+o(1)

I(p,Q) < 1 =⇒ Impossibility, I(p,Q) > 1 =⇒ Possible?

➢ Graph-splitting: Compute σ̂2(u) = σ̂genie(u;G2, σ̂−u(G1)) for all u

I(p,Q) > 1, and σ̂1 achieves almost exact recovery for nρn → ∞
=⇒ σ̂2 achieves exact recovery
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➢ Interested in exact recovery of σ when (G,σ) ∼ SBM(n,k,p, ρnQ)

➢ Used Genie-based (hypothetical) estimator

σ̂genie(u) := argmaxi∈[k] P(σ(u) = i | G = g,σ−u)pi

= argmaxi∈[k] P(D(u) = d | σ(u) = i,σ−u)pi

➢ P(σ̂genie(u) ̸= σ(u)) = n−I(p,Q)+o(1)

I(p,Q) < 1 =⇒ Impossibility, I(p,Q) > 1 =⇒ Possible?

➢ Graph-splitting: Compute σ̂2(u) = σ̂genie(u;G2, σ̂−u(G1)) for all u

I(p,Q) > 1, and σ̂1 achieves almost exact recovery for nρn → ∞
=⇒ σ̂2 achieves exact recovery
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How to produce a good initial estimator?

Approach 1: Sphere comparison. [Abbe, Sandon ’15] use Nr,r′(v, v ′,E) to
come up with tests for deciding whether v, v ′ are in same community or not.
For example, for k = 2, compute

Ir,r′(v, v ′,E) = Nr+2,r′(v, v ′,E)×Nr,r′(v, v ′,E) −Nr+1,r′(v, v ′,E)2

≈ c2(1 − c)2r+2r′+2

n2

(
d−

a− b

2

)2
dr+r

′+1
(
a− b

2

)r+r′+1(
21{σ(u) = σ(v)}− 1

)
[Abbe, Sandon ’15] proved that such sphere comparison achieves almost exact
recovery for a suitable choice of r, c whenever nρn → ∞, Q is irreducible,
and no two rows of Q are identical

Approach 2: Spectral Algorithms. Today’s focus

➡ Almost recovery when nρn → ∞
➡ Exact recovery up to information theoretic threshold
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Intuition: Spectral algorithm

Let A be the the adjacency matrix of G and A⋆ = E[A | σ]

A = A⋆︸︷︷︸
signal

+(A−A⋆)︸ ︷︷ ︸
noise

➢ (λi,ϕi)ki=1 and (λ⋆i ,ϕ⋆
i )
k
i=1 be the top k eigenpairs of A,A⋆ resp.

Fact: If Φ⋆ = (ϕ⋆
1 , . . . ,ϕ⋆

k) be n× k matrix, then

(Φ⋆)u,·

{
= (Φ⋆)v,· if σ(u) = σ(v)
̸= (Φ⋆)v,· if σ(u) ̸= σ(v)

If ∥A−A⋆∥ small =⇒ Φ ≈ Φ⋆



21

Intuition: Spectral algorithm

Let A be the the adjacency matrix of G and A⋆ = E[A | σ]

A = A⋆︸︷︷︸
signal

+(A−A⋆)︸ ︷︷ ︸
noise

➢ (λi,ϕi)ki=1 and (λ⋆i ,ϕ⋆
i )
k
i=1 be the top k eigenpairs of A,A⋆ resp.

Fact: If Φ⋆ = (ϕ⋆
1 , . . . ,ϕ⋆

k) be n× k matrix, then

(Φ⋆)u,·

{
= (Φ⋆)v,· if σ(u) = σ(v)
̸= (Φ⋆)v,· if σ(u) ̸= σ(v)

If ∥A−A⋆∥ small =⇒ Φ ≈ Φ⋆



21

Intuition: Spectral algorithm

Let A be the the adjacency matrix of G and A⋆ = E[A | σ]

A = A⋆︸︷︷︸
signal

+(A−A⋆)︸ ︷︷ ︸
noise

➢ (λi,ϕi)ki=1 and (λ⋆i ,ϕ⋆
i )
k
i=1 be the top k eigenpairs of A,A⋆ resp.

Fact: If Φ⋆ = (ϕ⋆
1 , . . . ,ϕ⋆

k) be n× k matrix, then

(Φ⋆)u,·

{
= (Φ⋆)v,· if σ(u) = σ(v)
̸= (Φ⋆)v,· if σ(u) ̸= σ(v)

If ∥A−A⋆∥ small =⇒ Φ ≈ Φ⋆



22

Matrix perturbation theory

Let (λi(X),ϕi(X)) be the i-th top eigenpair of X

Theorem [Davis, Kahan ’70]

Suppose X,X0 are symmetric matrices with X0 has k distinct non-zero
eigenvalues. Then

min
s∈{±1}

∥ϕi(X) − sϕi(X0)∥2 ⩽
c∥X−X0∥2→2

min{{λi−1(X0) − λi(X0), λi(X0) − λi+1(X0)}

with λ0(X0) = +∞, λk(X0) = −∞, for some absolute constant c > 0
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Spectral algorithm for almost exact recovery

Is ∥A− A⋆∥2→2 ≪ nρn whp whenever nρn → ∞?

— NO, instead we can look at the trimmed matrix

Spectral clustering: Compute σ̂1

(S1) Construct Ã as

Ãij =

{
Aij if di or dj < 2∥Q∥∞nρn
0 otherwise

(S2) Construct Φ̃ with top k eigenvectors of Ã

(S3) Apply k-means clustering on the rows of Φ̃

Theorem

σ̂1 achieves almost exact recovery whenever nρn → ∞
=⇒ σ̂2 = σ̂genie(G1, σ̂1) achieves exact recovery whenever I(p,Q) > 1
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We have shown

Spectral clustering + clean-up achieves exact recovery for I(p,Q) > 1

Do direct spectral algorithms achieve this optimal recovery?

Need an entrywise perturbation bound...
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Entrywise perturbation bound

Assumptions.

(A1) Well-behaved mean matrix. A⋆ has k distinct, non-zero eigenvalues
λ⋆1 > · · · > λ⋆k with λ⋆k = Θ(λ⋆1 ). Moreover, for some γ→ 0 and
∆ = mini{λ⋆i−1 − λ

⋆
i } with λ⋆0 = ∞

∥A⋆∥2→∞ ⩽ γ∆

(A2) Row-wise and column-wise independence. For any m ∈ [n],
(Aij : i = m or j = m) is independent of (Aij : i ̸= m or j ̸= m)

(A3) Spectral norm concentration. ∥A−A⋆∥2→2 ⩽ γ∆ whp

(A4) Row concentration. ∃ψ : R+ 7→ R+ (continuous, non-decreasing,
possibly depending on n) such that ψ(0) = 0,ψ(1) = O(1), ψ(x)

x is
non-increasing and for any m ∈ [n],w ∈ Rn

|⟨(A−A)m,w⟩| ⩽ ∆∥w∥∞ψ
(

∥w∥2√
n∥w∥∞

)
w.p. ⩾ 1 − o(n−1)

Theorem [Abbe, Fan, Wang, Zhong ’20]

mins∈{±1}

∥∥∥ϕi − sAϕ⋆
i

λ⋆i

∥∥∥∞ = o(∥ϕ⋆
i∥∞) whp for all i ∈ [k]
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