Community Detection from a Random Graphs perspective

Souvik Dhara

Purdue University, IE

Young European Probabilists Workshop 2024, EURANDOM
Day 1
Clustering/Community Detection Problem

➢ Communities are densely connected parts of a network

➢ Divide the graph into communities from unlabelled graph. This is an unsupervised learning task

[Abbe ’18]
Applications

Community detection is a central problem in machine learning and data mining...

Numerous applications in ...

- Recommender system [Wu, Xu, Srikant, Massoulié, Lelarge, & Hajek '15]
- Webpage sorting [Kumar, Raghavan, Rajagopalan, & Tomkins '99]
- Functionality of Human Brain [Martinet, Kramer, Viles, Perkins, Spencer, Chu, Cash & Kolaczyk '20]

- Huge literature has developed in past two decades from TCS, ML, Stats..
Objective of this minicourse

Two high-level questions:

1. When is recovering clusters possible/impossible? (Information theoretic limit)
2. Are there fast and optimal algorithms to recover clusters

➢ Will dive deep into a sharp phase transition for exact recovery

References

Stochastic Block Model

Parameters.

- **Number of communities:** \(k \geq 2 \)
- **Communities sizes:** \(p = (p_1, \ldots, p_k) \), a probability vector with \(p_i > 0 \)
- **Probability matrix:** \(Q \), a \(k \times k \) symmetric matrix
- **Sparsity** \(\rho_n \)
Stochastic Block Model

Parameters.

➢ Number of communities: \(k \geq 2 \)
➢ Communities sizes: \(p = (p_1, \ldots, p_k) \), a probability vector with \(p_i > 0 \)
➢ Probability matrix: \(Q \), a \(k \times k \) symmetric matrix
➢ Sparsity \(\rho_n \)

Generative Model. \(SBM(n, k, p, \rho_n Q) \)

➢ Generate \(\sigma \): \(\sigma(u) \sim \text{iid } p \) for each vertex \(u \in [n] \)
➢ Generate \(G \): Add edge \(\{u, v\} \) with probability \(\rho_n Q_{\sigma(u)\sigma(v)} \) (independent)

⇒ A Symmetric SBM corresponds to the case where \(p_i = \frac{1}{k} \) and \(Q_{ij} = a \) if \(i = j \) and \(Q_{ij} = b \) if \(i \neq j \)
Stochastic Block Model

Parameters.

- **Number of communities:** \(k \geq 2 \)
- **Communities sizes:** \(p = (p_1, \ldots, p_k) \), a probability vector with \(p_i > 0 \)
- **Probability matrix:** \(Q \), a \(k \times k \) symmetric matrix
- **Sparsity** \(\rho_n \)

Generative Model. \(\text{SBM}(n, k, p, \rho_n Q) \)

- **Generate \(\sigma \):** \(\sigma(u) \sim \text{iid} \ p \) for each vertex \(u \in [n] \)
- **Generate \(G \):** Add edge \(\{u, v\} \) with probability \(\rho_n Q_{\sigma(u)\sigma(v)} \) (independent)

A Symmetric SBM corresponds to the case where \(p_i = \frac{1}{k} \) and \(Q_{ij} = a \) if \(i = j \) and \(Q_{ij} = b \) if \(i \neq j \)

Statistical Task. Suppose \((G, \sigma) \sim \text{SBM}(n, K, p, \rho_n Q) \). We observe \(G = g \), but \(\sigma \) is unknown.

Find a "good" estimator \(\hat{\sigma} \)
Different modes of recovery

Agreement: $A(\sigma, \hat{\sigma}) := \max_{\pi \in S_k} \frac{1}{n} \sum_{u=1}^{n} 1\{\sigma(u) = \pi(\hat{\sigma}(u))\}$, where S_k is the set of permutations of $[k] := \{1, \ldots, k\}$

Partition associated with $\sigma, \hat{\sigma}$: $\Sigma_i = \{u : \sigma(u) = i\}$, and $\Sigma = \{\Sigma_1, \ldots, \Sigma_k\}$, and $\hat{\Sigma}$ is defined similarly for $\hat{\sigma}$
Different modes of recovery

Agreement: \(A(\sigma, \hat{\sigma}) := \max_{\pi \in S_k} \frac{1}{n} \sum_{u=1}^{n} 1\{\sigma(u) = \pi(\hat{\sigma}(u))\} \), where \(S_k \) is the set of permutations of \([k] := \{1, \ldots, k\}\).

Partition associated with \(\sigma, \hat{\sigma} \): \(\Sigma_i = \{u : \sigma(u) = i\} \), and \(\Sigma = \{\Sigma_1, \ldots, \Sigma_k\} \), and \(\hat{\Sigma} \) is defined similarly for \(\hat{\sigma} \).

Exact Recovery: \(\lim_{n \to \infty} \mathbb{P}(A(\sigma, \hat{\sigma}) = 1) = 1 \), or \(\lim_{n \to \infty} \mathbb{P}(\Sigma = \hat{\Sigma}) = 1 \)

Sharp phase transition for \(\rho_n = \frac{\log n}{n} \)

Almost Exact Recovery: \(\lim_{n \to \infty} \mathbb{P}(A(\sigma, \hat{\sigma}) \geq 1 - \varepsilon_n) = 1 \) for some \(\varepsilon_n \to 0 \)

Possibility depends on \(n\rho_n \to \infty \) or not

Partial Recovery: Definition slightly tricky, but for symmetric SBMs...

\[\lim_{n \to \infty} \mathbb{P}(A(\sigma, \hat{\sigma}) \geq \alpha) \] for some \(\alpha \in \left(\frac{1}{k}, 1 \right) \)

*Sharp phase transition for \(\rho_n = \frac{1}{n} \)
Exact Recovery
Maximum A Posteriori (MAP) Estimator

- Maximum A Posteriori (MAP) estimator, denoted by $\hat{\Sigma}_{MAP}$, solves the following maximization problem:

$$\text{maximize } \Pr(\hat{\Sigma} = S \mid G = g) \text{ over all partitions } S = \{S_1, \ldots, S_k\}$$

If there are multiple maximizers, pick one uniformly among them.
Maximum A Posteriori (MAP) Estimator

➢ Maximum A Posteriori (MAP) estimator, denoted by $\hat{\Sigma}_{MAP}$, solves the following maximization problem:

$$\text{maximize } P(\hat{\Sigma} = S \mid G = g) \quad \text{over all partitions } S = \{S_1, \ldots, S_k\}$$

If there are multiple maximizers, pick one uniformly among them

Lemma: For any estimator $\hat{\sigma}$, $P(\hat{\Sigma}_{MAP} \neq \Sigma) \leq P(\hat{\Sigma} \neq \Sigma)$
Maximum A Posteriori (MAP) Estimator

- **Maximum A Posteriori (MAP) estimator**, denoted by $\hat{\Sigma}_{\text{MAP}}$, solves the following maximization problem:

 $$\text{maximize } P(\hat{\Sigma} = S \mid G = g) \quad \text{over all partitions } S = \{S_1, \ldots, S_k\}$$

If there are multiple maximizers, pick one uniformly among them

Lemma: For any estimator $\hat{\sigma}$, $P(\hat{\Sigma}_{\text{MAP}} \neq \Sigma) \leq P(\hat{\Sigma} \neq \Sigma)$

Hence, Exact recovery is possible $\iff \hat{\Sigma}_{\text{MAP}}$ succeeds whp
Maximum A Posteriori (MAP) Estimator

- Maximum A Posteriori (MAP) estimator, denoted by \(\hat{\Sigma}_{\text{MAP}} \), solves the following maximization problem:

\[
\text{maximize } \mathbb{P}(\hat{\Sigma} = S | G = g) \text{ over all partitions } S = \{S_1, \ldots, S_k\}
\]

If there are multiple maximizers, pick one uniformly among them.

Lemma: For any estimator \(\hat{\sigma} \), \(\mathbb{P}(\hat{\Sigma}_{\text{MAP}} \neq \Sigma) \leq \mathbb{P}(\hat{\Sigma} \neq \Sigma) \)

Hence, Exact recovery is possible \(\iff \hat{\Sigma}_{\text{MAP}} \) succeeds whp.

Let’s try to find \(\hat{\Sigma}_{\text{MAP}} \) in a simple scenario...
Maximum A Posteriori (MAP) Estimator

➢ **Maximum A Posteriori (MAP) estimator**, denoted by $\hat{\Sigma}_{\text{MAP}}$, solves the following maximization problem:

$$\text{maximize } \mathbb{P}(\hat{\Sigma} = S \mid G = g) \text{ over all partitions } S = \{S_1, \ldots, S_k\}$$

If there are multiple maximizers, pick one uniformly among them.

Lemma: For any estimator $\hat{\sigma}$, $\mathbb{P}(\hat{\Sigma}_{\text{MAP}} \neq \Sigma) \leq \mathbb{P}(\hat{\Sigma} \neq \Sigma)$

Hence, Exact recovery is possible $\iff \hat{\Sigma}_{\text{MAP}}$ succeeds whp

Let’s try to find $\hat{\Sigma}_{\text{MAP}}$ in a simple scenario...

1. $\hat{\Sigma}_{\text{MAP}}$ is computationally intractable
2. The distribution of $\hat{\Sigma}_{\text{MAP}}$ is difficult to analyze
Genie-based Estimator

Genie-based (hypothetical) estimator:

To estimate $\sigma(u)$
Genie-based (hypothetical) estimator:

To estimate $\sigma(u)$

➢ Suppose genie tells us $\sigma_{-u} := (\sigma(v))_{v \neq u}$
Genie-based Estimator

Genie-based (hypothetical) estimator:

To estimate $\sigma(u)$

- Suppose genie tells us $\sigma_{-u} := (\sigma(v))_{v \neq u}$
- Compute MAP with genie’s added info

$$\hat{\sigma}_{\text{genie}}(u) := \arg\max_{i \in [k]} \mathbb{P}(\sigma(u) = i \mid G = g, \sigma_{-u})$$
Genie-based Estimator

Genie-based (hypothetical) estimator:

To estimate $\sigma(u)$

➢ Suppose genie tells us $\sigma_{-u} := (\sigma(v))_{v \neq u}$

➢ Compute MAP with genie’s added info

\[\hat{\sigma}_{\text{genie}}(u) := \arg\max_{i \in [k]} \Pr(\sigma(u) = i \mid G = g, \sigma_{-u}) \]

\[= \arg\max_{i \in [k]} \Pr(G = g \mid \sigma(u) = i, \sigma_{-u}) p_i \]
Genie-based (hypothetical) estimator:

To estimate $\sigma(u)$

- Suppose genie tells us $\sigma_{-u} := (\sigma(v))_{v \neq u}$
- Compute MAP with genie's added info

$$\hat{\sigma}_{\text{genie}}(u) := \arg\max_{i \in [k]} \mathbb{P}(\sigma(u) = i \mid G = g, \sigma_{-u})$$

$$= \arg\max_{i \in [k]} \mathbb{P}(G = g \mid \sigma(u) = i, \sigma_{-u}) p_i$$

$$= \arg\max_{i \in [k]} \mathbb{P}(D(u) = d \mid \sigma(u) = i, \sigma_{-u}) p_i$$

$D(u) = (D_1(u), \ldots, D_k(u))$ is degree profile

$D_j(u) := \#$ edges from u to community j
Error probability for the genie-based estimator

Fact: \(\frac{1}{k-1} \tilde{P}_e \leq \mathbb{P}(\hat{\sigma}_{\text{genie}}(u) \neq \sigma(u) \mid \sigma_{-u}) \leq \tilde{P}_e \), where

\[
\tilde{P}_e := \sum_{i<j} \sum_{d \in \mathbb{Z}_+^k} \min \{ \mathbb{P}(D(u) = d \mid \sigma(u) = i, \sigma_{-u}) p_i, \mathbb{P}(D(u) = d \mid \sigma(u) = j, \sigma_{-u}) p_j \}
\]
Error probability for the genie-based estimator

Fact: \(\frac{1}{k-1} \tilde{P}_e \leq \mathbb{P}(\hat{\sigma}_{\text{genie}}(u) \neq \sigma(u) \mid \sigma_{-u}) \leq \tilde{P}_e \), where

\[
\tilde{P}_e := \sum_{i<j} \sum_{d \in \mathbb{Z}_+^k} \min\{\mathbb{P}(D(u) = d \mid \sigma(u) = i, \sigma_{-u})p_i, \mathbb{P}(D(u) = d \mid \sigma(u) = j, \sigma_{-u})p_j\}
\]

Lemma 1 [Abbe, Sandon ’15]

If \((G, \sigma) \sim \text{SBM}(n, k, p, \rho_n Q)\) and \(\rho_n = \frac{\log n}{n}\), then w.p. \(\geq 1 - e^{-\Omega(n^c)} \)

\[
\tilde{P}_e = n^{-I(p,Q)+O\left(\frac{\log \log n}{\log n}\right)}
\]

where

\[
I(p, Q) = \min_{i<j} \text{CH}((p_lQ_{il})_{l \in [k]} \parallel (p_lQ_{jl})_{l \in [k]})
\]

\[
\text{CH}(\mu \parallel \nu) = \max_{t \in [0,1]} \sum_x \nu(x)f_t\left(\frac{\mu(x)}{\nu(x)}\right), f_t(y) = 1 - t + ty - y^t
\]
Impossibility

Theorem 1

Suppose that \((G, \sigma) \sim \text{SBM}(n, k, p, \rho_n Q)\) and \(\rho_n = \frac{\log n}{n}\). If \(I(p, Q) < 1\), then for any estimator \(\hat{\sigma}\),

\[
\lim_{n \to \infty} \mathbb{P}(\hat{\sigma} \neq \sigma) = 1 \quad (\text{Exact recovery impossible})
\]
Impossibility

Theorem 1

Suppose that \((G, \sigma) \sim \text{SBM}(n, k, p, \rho_n Q)\) and \(\rho_n = \frac{\log n}{n}\). If \(I(p, Q) < 1\), then for any estimator \(\hat{\sigma}\),

\[
\lim_{n \to \infty} P(\hat{\sigma} \neq \sigma) = 1 \quad \text{(Exact recovery impossible)}
\]

Example: Consider the symmetric SBM, i.e., \(Q_{ij} = a\) if \(i = j\) and \(Q_{ij} = b\) for \(i \neq j\), and \(p_i = \frac{1}{k}\) and \(\rho_n = \frac{\log n}{n}\). Then

\[
\frac{(\sqrt{a} - \sqrt{b})^2}{k} \quad \Rightarrow \quad \text{Exact recovery impossible}
\]
Finding good estimators

Can we find an estimator that is efficiently computable and achieves exact recovery whenever $I(p, Q) > 1$?
Finding good estimators

Can we find an estimator that is efficiently computable and achieves exact recovery whenever $I(p, Q) > 1$?

Idea (Two-step estimator):

➡ Step 1: Good Guess. Take a good enough initial estimator, i.e., take $\hat{\sigma}_1$ that achieves almost exact recovery

➡ Step 2: Clean up. Compute $\hat{\sigma}_2(u) := \hat{\sigma}_{\text{genie}}(u, G, \hat{\sigma}_1, -u)$ for all u
Finding good estimators

Can we find an estimator that is efficiently computable and achieves exact recovery whenever $I(p, Q) > 1$?

Idea (Two-step estimator):

⇒ Step 1: Good Guess. Take a good enough initial estimator, i.e., take $\hat{\sigma}_1$ that achieves almost exact recovery

⇒ Step 2: Clean up. Compute $\hat{\sigma}_2(u) := \hat{\sigma}_{\text{genie}}(u, G, \hat{\sigma}_1, -u)$ for all u

Advantage: $\hat{\sigma}_2$ is efficiently computable if $\hat{\sigma}_1$ is so

Challenges:

1. How to find a good $\hat{\sigma}_1$?
2. $\hat{\sigma}_1$ depends on G, which makes $\hat{\sigma}_{\text{genie}}(u, G, \hat{\sigma}_1, -u)$ difficult to analyze.
Graph-splitting

(G_1, G_2) is constructed from G as follows:

1. Include each edge of G in G_1 w.p. γ_n (independently)
2. $G_2 = G \setminus G_1$ contains rest of the edges
Graph-splitting

\((G_1, G_2) \) is constructed from \(G \) as follows:

1. Include each edge of \(G \) in \(G_1 \) w.p. \(\gamma_n \) (independently)
2. \(G_2 = G \setminus G_1 \) contains rest of the edges

Modified Two-step estimator: Compute \(\hat{\sigma}_{\text{genie}}(u, G_2, \hat{\sigma}_{1,-u}(G_1)) \) for all \(u \)
Graph-splitting

\((G_1, G_2)\) is constructed from \(G\) as follows:

1. Include each edge of \(G\) in \(G_1\) w.p. \(\gamma_n\) (independently)
2. \(G_2 = G \setminus G_1\) contains rest of the edges

Modified Two-step estimator: Compute \(\hat{\sigma}_{\text{genie}}(u, G_2, \hat{\sigma}_{1,-u}(G_1))\) for all \(u\)

Lemma 2

Suppose that \((G, \sigma) \sim \text{SBM}(n, k, p, \rho_n Q)\) and \(\rho_n = \frac{\log n}{n}\), and take graph-splitting (\(G_1, G_2\)) as above with \(\frac{1}{\log n} \ll \gamma_n \ll \frac{\log \log n}{\log n}\).

- Suppose \(\hat{\sigma}_1 = \hat{\sigma}_1(G_1)\) achieve almost exact recovery
- Take \(\tilde{G}_2 \sim \text{SBM}(n, k, p, \frac{(1-\gamma_n)\log n}{n} Q)\)

Then for any \(u\) and \(d \in \mathbb{Z}^k_+\), with high probability,

\[
\mathbb{P}(D(u; \hat{\sigma}_1, G_2) = d \mid G_1, \hat{\sigma}_{1,-u}, \sigma(u) = i) \\
\leq (1 + o(1))\mathbb{P}(D(u; \hat{\sigma}_1, \tilde{G}_2) = d \mid \hat{\sigma}_{i,-u}, \sigma(u) = i) + n^{-\omega(1)}
\]
Achievability

Theorem 2
Suppose that \((G, \sigma) \sim \text{SBM}(n, k, p, \rho_n Q)\) and \(\rho_n = \frac{\log n}{n}\), and take graph-splitting \((G_1, G_2)\) as above with \(\frac{1}{\log n} \ll \gamma_n \ll \frac{\log \log n}{\log n}\).

- Suppose \(\hat{\sigma}_1 = \hat{\sigma}_1(G_1)\) achieve almost exact recovery
Then,
\[
I(p, Q) > 1 \iff \hat{\sigma}_\text{genie}(G_2, \hat{\sigma}_1, -u(G_1)) \text{ achieves exact recovery}
\]

- Exact recovery is possible up to the information theoretic threshold if almost exact recovery is possible for \(n\rho_n \to \infty\)
How to produce a good initial estimator?
Approach 1: Sphere comparison

➢ Choose E by sampling from all edges with probability c (fixed)

➢ Let $N_{r,r'}(v,v',E)$ be the number of pairs of vertices (v_1,v_2) such that $v_1 \in N_r(v,G \setminus E)$, $v_2 \in N_r(v',G \setminus E)$, and $\{v_1,v_2\} \in E$

![Diagram of sphere comparison](image-url)
Approach 1: Sphere comparison

➢ Choose E by sampling from all edges with probability c (fixed)

➢ Let $N_{r,r'}(v,v',E)$ be the number of pairs of vertices (v_1,v_2) such that $v_1 \in N_r(v,G \setminus E)$, $v_2 \in N_r(v',G \setminus E)$, and $\{v_1,v_2\} \in E$

➢ Idea of [Abbe, Sandon ’15] is to use $N_{r,r'}(v,v',E)$ to come up with tests for deciding whether v,v' are in same community or not. For example, for $k = 2$, compute

$$I_{r,r'}(v,v',E) = N_{r+2,r'}(v,v',E) \times N_{r,r'}(v,v',E) - N_{r+1,r'}(v,v',E)^2$$

Result [Abbe, Sandon ’15]. Sphere comparison achieves almost exact recovery for a suitable choice of r,c whenever $n \rho_n \to \infty$, Q is irreducible, and no two rows of Q are identical
Day 2
Recap

➢ Interested in **exact recovery** of σ when $(G, \sigma) \sim \text{SBM}(n, k, p, \rho_n Q)$
Recap

➢ Interested in exact recovery of σ when $(G, \sigma) \sim \text{SBM}(n, k, p, \rho_n Q)$

➢ Used Genie-based (hypothetical) estimator

\[\hat{\sigma}_{\text{genie}}(u) := \arg\max_{i \in [k]} \mathbb{P}(\sigma(u) = i \mid G = g, \sigma_{-u}) p_i \]
\[= \arg\max_{i \in [k]} \mathbb{P}(D(u) = d \mid \sigma(u) = i, \sigma_{-u}) p_i \]
Recap

➢ Interested in exact recovery of σ when $(G, \sigma) \sim \text{SBM}(n, k, p, \rho_n Q)$

➢ Used Genie-based (hypothetical) estimator

$$\hat{\sigma}_{\text{genie}}(u) := \arg\max_{i \in [k]} P(\sigma(u) = i \mid G = g, \sigma - u) p_i$$

$$= \arg\max_{i \in [k]} P(D(u) = d \mid \sigma(u) = i, \sigma - u) p_i$$

➢ $P(\hat{\sigma}_{\text{genie}}(u) \neq \sigma(u)) = n^{-I(p,Q) + o(1)}$

I(p, Q) < 1 \implies Impossibility, \quad I(p, Q) > 1 \implies Possible?
Recap

➢ Interested in exact recovery of σ when $(G, \sigma) \sim \text{SBM}(n, k, p, \rho_n Q)$

➢ Used Genie-based (hypothetical) estimator

$$\hat{\sigma}_{\text{genie}}(u) := \arg\max_{i \in [k]} \mathbb{P}(\sigma(u) = i \mid G = g, \sigma_{-u})p_i$$

$$= \arg\max_{i \in [k]} \mathbb{P}(D(u) = d \mid \sigma(u) = i, \sigma_{-u})p_i$$

➢ $\mathbb{P}(\hat{\sigma}_{\text{genie}}(u) \neq \sigma(u)) = n^{-I(p,Q) + o(1)}$

$$I(p, Q) < 1 \implies \text{Impossibility}, \quad I(p, Q) > 1 \implies \text{Possible?}$$

➢ Graph-splitting: Compute $\hat{\sigma}_2(u) = \hat{\sigma}_{\text{genie}}(u; G_2, \hat{\sigma}_{-u}(G_1))$ for all u

$$I(p, Q) > 1, \text{ and } \hat{\sigma}_1 \text{ achieves almost exact recovery for } n\rho_n \to \infty$$

$$\implies \hat{\sigma}_2 \text{ achieves exact recovery}$$
How to produce a good initial estimator?

Approach 1: Sphere comparison. [Abbe, Sandon ’15] use $N_{r,r'}(v, v', E)$ to come up with tests for deciding whether v, v' are in same community or not. For example, for $k = 2$, compute

$$I_{r,r'}(v, v', E) = N_{r+2,r'}(v, v', E) \times N_{r,r'}(v, v', E) - N_{r+1,r'}(v, v', E)^2$$

$$\approx \frac{c^2(1-c)^{2r+2r'+2}}{n^2} \left(d - \frac{a - b}{2} \right)^2 d^{r+r'+1} \left(\frac{a-b}{2} \right)^{r+r'+1} \left(21 \{ \sigma(u) = \sigma(v) \} - 1 \right)$$

[Abbe, Sandon ’15] proved that such sphere comparison achieves almost exact recovery for a suitable choice of r, c whenever $n \rho_n \to \infty$, Q is irreducible, and no two rows of Q are identical.
How to produce a good initial estimator?

Approach 1: Sphere comparison. [Abbe, Sandon ’15] use $N_{r,r'}(v,v', E)$ to come up with tests for deciding whether v,v' are in same community or not. For example, for $k = 2$, compute

$$I_{r,r'}(v,v', E) = N_{r+2,r'}(v,v', E) \times N_{r,r'}(v,v', E) - N_{r+1,r'}(v,v', E)^2$$

$$\approx \frac{c^2(1-c)^{2r+2r'+2}}{n^2} \left(d - \frac{a-b}{2} \right)^2 d^{r+r'+1} \left(\frac{a-b}{2} \right)^{r+r'+1} (2\mathbb{1}\{\sigma(u) = \sigma(v)\} - 1)$$

[Abbe, Sandon ’15] proved that such sphere comparison achieves almost exact recovery for a suitable choice of r, c whenever $n\rho_n \to \infty$, Q is irreducible, and no two rows of Q are identical.

Approach 2: Spectral Algorithms. Today’s focus

- Almost recovery when $n\rho_n \to \infty$
- Exact recovery up to information theoretic threshold
Intuition: Spectral algorithm

Let A be the the adjacency matrix of G and $A^* = \mathbb{E}[A | \sigma]$

$$A = A^* + (A - A^*)$$

signal noise

$
\Rightarrow (\lambda_i, \phi_i)_{i=1}^k$ and $(\lambda^*_i, \phi^*_i)_{i=1}^k$ be the top k eigenpairs of A, A^* resp.
Intuition: Spectral algorithm

Let A be the adjacency matrix of G and $A^* = \mathbb{E}[A \mid \sigma]$

$$A = \underbrace{A^*}_\text{signal} + \underbrace{(A - A^*)}_\text{noise}$$

$
\geq (\lambda_i, \phi_i)_{i=1}^k$ and $(\lambda_i^*, \phi_i^*)_{i=1}^k$ be the top k eigenpairs of A, A^* resp.

Fact: If $\Phi^* = (\phi_1^*, \ldots, \phi_k^*)$ be $n \times k$ matrix, then

$$(\Phi^*)_u, v \begin{cases} = (\Phi^*)_v, & \text{if } \sigma(u) = \sigma(v) \\ \neq (\Phi^*)_v, & \text{if } \sigma(u) \neq \sigma(v) \end{cases}$$
Intuition: Spectral algorithm

Let A be the adjacency matrix of G and $A^* = \mathbb{E}[A | \sigma]$

$$A = A^* + (A - A^*)$$

signal
noise

$(\lambda_i, \phi_i)_{i=1}^k$ and $(\lambda_i^*, \phi_i^*)_{i=1}^k$ be the top k eigenpairs of A, A^* resp.

Fact: If $\Phi^* = (\phi_1^*, \ldots, \phi_k^*)$ be $n \times k$ matrix, then

$$(\Phi^*)_u \cdot \begin{cases} = (\Phi^*)_v, & \text{if } \sigma(u) = \sigma(v) \\ \neq (\Phi^*)_v, & \text{if } \sigma(u) \neq \sigma(v) \end{cases}$$

If $\|A - A^*\|$ small $\implies \Phi \approx \Phi^*$
Matrix perturbation theory

Let \((\lambda_i(X), \phi_i(X))\) be the i-th top eigenpair of \(X\)

Theorem [Davis, Kahan ’70]

Suppose \(X, X_0\) are symmetric matrices with \(X_0\) has \(k\) distinct non-zero eigenvalues. Then

\[
\min_{s \in \{\pm 1\}} \| \phi_i(X) - s \phi_i(X_0) \|_2 \leq \frac{c \|X - X_0\|_{2 \rightarrow 2}}{\min\{\lambda_{i-1}(X_0) - \lambda_i(X_0), \lambda_i(X_0) - \lambda_{i+1}(X_0)\}}
\]

with \(\lambda_0(X_0) = +\infty, \lambda_k(X_0) = -\infty\), for some absolute constant \(c > 0\)
Spectral algorithm for almost exact recovery

\[\text{Is } \|A - A^*\|_{2 \to 2} \ll n \rho_n \text{ whp whenever } n \rho_n \to \infty? \]
Spectral algorithm for almost exact recovery

Is $\|A - A^*\|_{2 \to 2} \ll n \rho_n \text{ whp whenever } n \rho_n \to \infty$?

— NO, instead we can look at the trimmed matrix
Spectral algorithm for almost exact recovery

Is \(\| A - A^* \|_{2 \rightarrow 2} \ll n \rho_n \text{ whp whenever } n \rho_n \to \infty? \)

— NO, instead we can look at the trimmed matrix

Spectral clustering: Compute \(\hat{\sigma}_1 \)

(S1) Construct \(\tilde{A} \) as

\[
\tilde{A}_{ij} = \begin{cases}
A_{ij} & \text{if } d_i \text{ or } d_j < 2\|Q\|_{\infty} n \rho_n \\
0 & \text{otherwise}
\end{cases}
\]

(S2) Construct \(\tilde{\Phi} \) with top \(k \) eigenvectors of \(\tilde{A} \)

(S3) Apply \(k \)-means clustering on the rows of \(\tilde{\Phi} \)

Theorem

\(\hat{\sigma}_1 \) achieves almost exact recovery whenever \(n \rho_n \to \infty \)

\(\implies \hat{\sigma}_2 = \hat{\sigma}_{\text{genie}}(G_1, \hat{\sigma}_1) \) achieves exact recovery whenever \(I(p, Q) > 1 \)
We have shown

Spectral clustering $+$ clean-up achieves exact recovery for $I(p, Q) > 1$

Do direct spectral algorithms achieve this optimal recovery?

Need an entrywise perturbation bound...
Entrywise perturbation bound

Assumptions.

(A1) **Well-behaved mean matrix.** A^* has k distinct, non-zero eigenvalues $\lambda_1^* > \cdots > \lambda_k^*$ with $\lambda_k^* = \Theta(\lambda_1^*)$. Moreover, for some $\gamma \to 0$ and $\Delta = \min_i \{ \lambda_i^* - 1 \}$ with $\lambda_0^* = \infty$

\[\|A^*\|_{2\to\infty} \leq \gamma \Delta \]

(A2) **Row-wise and column-wise independence.** For any $m \in [n]$, $(A_{ij} : i = m \text{ or } j = m)$ is independent of $(A_{ij} : i \neq m \text{ or } j \neq m)$

(A3) **Spectral norm concentration.** $\|A - A^*\|_{2\to2} \leq \gamma \Delta$ whp

(A4) **Row concentration.** $\exists \psi : \mathbb{R}_+ \mapsto \mathbb{R}_+ \ (\text{continuous, non-decreasing, possibly depending on } n)$ such that $\psi(0) = 0, \psi(1) = O(1), \frac{\psi(x)}{x}$ is non-increasing and for any $m \in [n], w \in \mathbb{R}^n$

\[|\langle (A - A)_m, w \rangle| \leq \Delta \|w\|_{\infty} \psi \left(\frac{\|w\|_2}{\sqrt{n}\|w\|_{\infty}} \right) \quad \text{w.p.} \quad \geq 1 - o(n^{-1}) \]
Entrywise perturbation bound

Assumptions.

(A1) **Well-behaved mean matrix.** A^* has k distinct, non-zero eigenvalues $\lambda_1^* > \cdots > \lambda_k^*$ with $\lambda_k^* = \Theta(\lambda_1^*)$. Moreover, for some $\gamma \to 0$ and

$$\Delta = \min_i \{\lambda_{i-1}^* - \lambda_i^*\}$$

with $\lambda_0^* = \infty$

$$\|A^*\|_2 \to \infty \leq \gamma \Delta$$

(A2) **Row-wise and column-wise independence.** For any $m \in [n]$, $(A_{ij} : i = m \text{ or } j = m)$ is independent of $(A_{ij} : i \neq m \text{ or } j \neq m)$

(A3) **Spectral norm concentration.** $\|A - A^*\|_2 \to 2 \leq \gamma \Delta$ whp

(A4) **Row concentration.** $\exists \psi : \mathbb{R}_+ \mapsto \mathbb{R}_+ \text{ (continuous, non-decreasing, possibly depending on } n\text{) such that } \psi(0) = 0, \psi(1) = O(1), \frac{\psi(x)}{x}$ is non-increasing and for any $m \in [n], w \in \mathbb{R}^n$

$$|\langle (A - A)_m, w \rangle| \leq \Delta \|w\|_\infty \psi\left(\frac{\|w\|_2}{\sqrt{n} \|w\|_\infty}\right) \quad \text{w.p.} \quad \geq 1 - o(n^{-1})$$

Theorem [Abbe, Fan, Wang, Zhong '20]

$$\min_{s \in \{\pm 1\}} \|\Phi_i - s \frac{A\Phi_i^*}{\lambda_i^*}\|_\infty = o(\|\Phi_i^*\|_\infty) \text{ whp for all } i \in [k]$$